利用热力学计算软件JMatPro和相应的镍基高温合金数据库,研究了U720Li合金以及在此基础上研发的新型Ni-Co基高温合金的化学成分对平衡相的析出行为、加工性能和γ/γ'晶格错配度的影响,结果表明:Ti/Al值(原子比)的增加提高了合金中γ/γ'相的品格错配度,γ'析出相的含量随Ti+Al含量(原子分数)的增加而增加.因此,增加Ti/Al值和Ti+Al含量能提高合金的高温强度.Co含量的升高可以拓宽合金的加工窗口,改善合金的加工能力,并且还可以增加合金γ/γ'相的晶格错配度,提高合金错配强化的效果,同时,Ti/Al值的增加促进合金中η相析出,而Co含量的增加具有抑制,η相的效果,因此,在Co含量较高的Ni-Co基高温合金中,适当提高Ti含量,增加Ti/Al值对提高合金高温强度有利,
Thermodynamic properties of the traditional U720Li alloy and the new Ni-Co base superalloy have been studied using JMatPro and the latest relevant database for Ni base superalloys.The effects of chemical composition on the equilibrium precipitation phases, process-ability and γ/γ' mismatch have been analyzed. It is found that the γ/γ' mismatch increases with the increase of Ti/Al (atomic ratio). The volume fraction of γ' is proportional to the Ti+Al contents (atomic fraction).Therefore, by increasing the Ti/Al ratio and Ti+Al content, the yield strength of alloys can be in proved. On the other hand, the γ' solvus temperature decreases by Co additions. As a result, the range of processing temperature is extended. The γ/γ' mismatch also increases with Co additions, which adds additional strengthening to the alloy. Moreover, high Ti/Al ratio or low Co content promotes the precipitation of η phase. Thus, Ni-Co base superalloys with high Ti+Al content, Ti/Al ratio and Co content bear an improved strength, phase stabilities and process-ability.
参考文献
[1] | Xu Z L.Properties and Strength Design and Engineering Application of High Temperature Materials.Beijing:Chemical Industry Press,2006:25(徐自立.高温金属材料的性能、强度设计及工程应用,北京:化学工业出版社,2006:25) |
[2] | Huang Q Y,Li H K,Chen G L,Guo J T,Zhang S S,Zhou R F,Ding G S,Liu G Z.Superalloys.Beijing:Metallurgical Industry Press,2000:48(黄乾尧,李汉康,陈国良,郭建亭,张舒声,周瑞发,丁桂山,柳光祖.高温合金,北京:冶金工业出版社,2000:48) |
[3] | Gu Y F,Harada H,Cui C Y,Ping D H,Sato A,Fujioka J.Scr Mater,2006; 55:815 |
[4] | Cui C Y,Gu Y F,Ping D H,Harada H.Metall Mater Trans,2009; 40A:282 |
[5] | Gu Y F,Cui C Y,Harada H,Fukuda T,Ping D H,Mistushasi A,Kato K,Kobayashi T,Fujioka J.In:Reed R C,Green K A,Caron P,Gabb T P,Fahrmann M G,Huron E S,Woodard S A,eds.,Superalloys 2008,PA:TMS,2008:53 |
[6] | Guo J T.Acta Metall Sin,1978; 14:227(郭建亭.金属学报,1978; 14:227) |
[7] | Liu J Q,Zeng Y P,Xie X S.Mater Rev,2007; 21:119(刘建强,曾燕屏,谢锡善,材料导报,2007; 21:119) |
[8] | Dong J X,Zhang M C,Zeng Y P.Rare Met Mater Eng,2005; 34:51(董建新,张麦仓,曾燕屏.稀有金属材料与工程,2005; 34:51) |
[9] | Dong J X,Li A,Zhang M C.J Mater Eng,2003; 9:7(董建新,李昂,张麦仓.材料工程,2003,9:7) |
[10] | Saunders N,Guo Z,Li X,Miodownik A P,Schille J.In:Green K A,Pollock T M,Harada H,Howson T E,Reed R C,Scirra J J,Walston S,eds.,Superalloys 2004,PA:TMS,2004:849 |
[11] | Saunders N.In:Kissinger R D,Deye D J,Anton D L,Cetel A D,Nathal M V,Pollock T M,Woodford D A,eds.,Superaloys 1996,PA:TMS,1996:101 |
[12] | Saunders N,Miodownik A P,Schille J.J Mater Sci,2004;39:7237 |
[13] | Saunders N,Guo Z,Li X,Miodownik A P,Schille J.JOM,2003; 55(12):60 |
[14] | Cao W D,Kennedy R.In:Green K A,Pollock T M,Harada H,Howson T E,Reed R C,Scirra J J,Walston S,eds.,Superalloys 2004,Seven Springs,PA:TMS,2004:91 |
[15] | Guo J T.Materials Science and Enagineering for Superalloys.Beijing:Science Press,2008:109,292(郭建亭.高温合金材料学(上册).北京:科学出版社,2008:109,292) |
[16] | Cui C Y,Gu Y F,Ping D H,Harada H,Fukuda T.Mater Sci Eng,2008; A485:651 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%