对涡轮盘用镍基粉末高温合金FGH 4096进行了热模锻造+直接时效处理,探索细化粉末高温合金毛坯组织的工艺及相关增强机制,结果表明:在不降低延伸率的前提下,直接时效处理对于热模锻造后的合金具有明显的强化作用,并且以多方向变形配合直接时效的强化效果最为显著.按多方向热模锻造+直接时效工艺,可使FGH 4096合金的组织显著细化,平均晶粒尺寸达6 μm,γ'相析出尺寸达80 nm. OM,SEM和TEM观察表明,除多方向大变形可直接破碎晶粒,细化晶粒外,反复再结晶也是细化晶粒的有效途径;同时,洁净的再结晶晶界完全取代了原始粉末颗粒边界,直接时效处理后保留了多方向变形产生的位错缠结,并且获得更为细小的,γ'相,热模锻造+直接时效处理后合金所表现出来的超高强度主要源自于细晶强化、晶界强化、形变强化和γ'相强化的综合作用,
Hot-die forging+direct aging processing was used to improve the microstructure and mechanical property of P/M superalloy FGH 4096, a kind of materials used in turbine disk, which includes a solution treatment at 1130 ℃ for 0.5 h, multiaxially forging (total deformation about 100%)and direct aging at 760 ℃ for 16 h, in addition, drawing (70%) and upseting (40%)+direct aging treatment has also been invesigated. OM, SEM and TEM were employed to study the microstructure evolution and strengthen mechanism. It was found that the direct aging treatment has obvious effect on strengthening, especially, for the multiaxially forged alloy, in which dynamic recrystallization appeared,and the previous particle boundary is replaced by clean recrystallized boundary and the grain is refined to about 6 μm. After direct aging the average size of γ' phase is 80 nm, and the tangled dislocation is still reserved. The strengthening mechanisms include grain refinement, clean boundary, thermomechanical deformation and γ' phase precipitation.
参考文献
[1] | Reed R C.The Superalloys Fundamentals and Applications.New York:Cambridge University Press,2006:217 |
[2] | Ning Y Q,Yao Z K,Guo H Z,Tao Y,Zhang Y W.Key Eng Mater,2009; 407-408:694 |
[3] | Zhao M L,Sun W R,Yang S L,Qi F,Guo S R,Hu Z Q.Acta Metall Sin,2009; 45:79(赵美兰,孙文儒,杨树林,祈峰,郭守仁,胡壮麒,金属学报,2009; 45:79) |
[4] | Viswanathan G B,Sarosi P M,Henry M F,Whitis D D,Milligan W W,Mills M J.Acta Mater,2005; 53:3041 |
[5] | Dunlavy M A,Shivpuri R,Semiatin S L.Mater Sci Eng,2003; A359:210 |
[6] | Viswanathan G B,Sarosi P M,Whiti8 D H,Mills M J.Mater Sci Eng,2005; A400-401:489 |
[7] | Liu J T,Liu G Q,Hu B F,Song Y P,Qin Z R,Zhang Y W.J Univ Sci Technol Beijing,2006; 13:319 |
[8] | Tian G F,Jia C C,Wen Y,Hu B F.J Univ Sci Technol Beijing,2008; 15:729 |
[9] | Liu J T,Liu G Q,Hu B F,Song Y P,Qin Z R,Xiang S,Zhang Y W.Rare Metal Mater Eng,2006; 35:418(刘建涛,刘国权,胡本芙,宋月鹏,秦子然,向嵩,张义文.稀有金属材料与工程,2006; 35:418) |
[10] | Su Z W,Yao Z K,Guo H Z,Liu J C,Liu J Y,Cui J,Liu G Q,Jiang M,Ying Z Y.Acta Metall Sin,1996; 32:377(苏祖武,姚泽坤,郭鸿镇,刘建超,刘建宇,崔健,刘果青,姜明,应志毅,金属学报,1996; 32:377) |
[11] | Yao Z K,Guo H Z,Liu J C,Su Z W,Jiang M,Ying Z Y,Liu J Y,Cui J.Chin J Nonfer Met,2000; 10:378(姚泽坤,郭鸿镇,刘建超,苏祖武,姜明,应志毅,刘建宇,崔健,中国有色金属学报,2000; 10:378) |
[12] | Barani A A,Ponge D,Raabe D.Mater Sci Eng,2006; A426:194 |
[13] | Koyama M,Sawaguchi T,Ogawa K,Kikuchi T,Murakami M.Mater Sci Eng,2008; A497:353 |
[14] | Kockar B,Karaman I,Kulkarni A,Chumlyakov Y,Kireeva I V.J Nuc Mater,2007; 361:298 |
[15] | Frenzel J,Pfetzing J,Neuking K,Eggeler G.Mater Sci Eng,2008; A481-482:635 |
[16] | Bai B Z,Yang L Y,Zhao Y F.Chin J Rare Met,2002; 26:7(白秉哲,杨鲁义,赵耀峰,稀有金属,2002; 26:7) |
[17] | Chen H M,Hu B F.J Univ Sci Technol Beijing,2003; 10:51 |
[18] | Guo W M,Wu J T,Zhang F G,Zhao M H.J Iron Steel Res Int,2006; 13:65 |
[19] | Ning Y Q,Yao Z K,Li H,Guo H Z,Tao Y,Zhang Y W.Mater Sci Eng,2010; A527:965 |
[20] | Ning Y Q,Yao Z K,Guo H Z,Tao Y,Zhang Y W.Chin J Mech Eng,2009; 22:926 |
[21] | Ning Y Q,Yao Z K,Yue T W,Guo H Z,Tao Y,Zhang Y W.Rare Metal Mater Eng,2009; 38:1783(宁永权,姚泽坤,岳太文,郭鸿镇,陶宇,张义文,稀有金属材料与工程,2009; 38:1783) |
[22] | Guo J T.Materials Science and Engineering for Superalloys.Beijing:Science Press,2008:111(郭建亭,高温合金材料学(上).北京:科学出版社,2008:111) |
[23] | John G,David F.Adv Mater Processes,2003; 161:26 |
[24] | Liu Y Y.PhD Thesis,Northwestern Polytechnical University,Xi'an,2009(刘莹莹.西北工业大学博士学位论文,西安,2009) |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%