欢迎登录材料期刊网

材料期刊网

高级检索

通过对传统定向凝固(HRS)及液态金属冷却(LMC)2种工艺制备的镍基单晶高温合金铸态微孔和固溶微孔尺寸与分布的定量表征,分析了制备工艺以及合金成分对单晶合金铸态及固溶微孔形成的影响.结果表明:合金成分的差异导致本研究中HRS合金铸态微孔体积分数低于LMC合金.2种合金经固溶热处理后,在靠近表面的贫A1层及附近均形成大量的圆形固溶微孔,该类微孔的数量随着与表面的远离而减少.高温空气环境下Al向表面扩散形成贫Al层,进而由于Kirkendall效应形成近表面固溶微孔.高温下枝晶干和枝晶间的元素在扩散过程中产生的Kirkendall效应是合金内部固溶微孔的主要成因.LMC合金较小的一次枝晶臂间距和较低的元素凝固偏析程度使得其内部产生的固溶微孔数量远小于HRS合金.

参考文献

[1] Hu Z Q,Liu L R,Jin T,Sun X F.Aerial Eng,2005; 31(3):1 (胡壮麒,刘丽荣,金涛,孙晓峰.航空发动机,2005; 31(3):1)
[2] Pollock T M,Tin S.J Propul Power,2006; 22:361
[3] Guo J T.Materials Science and Engineering for Superalloys (Vol.1).Beijing:Science Press,2008:387(郭建亭.高温合金材料学(上册).北京:科学出版社,2008:387)
[4] Chen Q Z,Jones N,Knowles D M.Acta Mater,2002; 50:1095
[5] MacLachlan D W,Knowles D M.Mater Sci Eng,2001;A302:275
[6] Wang Z H,Zhao N R,Li J G,Hou G C,Jin T,Sun X F,Hu Z Q.J Mater Eng,2008; (12):46(王志辉,赵乃仁,李金国,侯贵臣,金涛,孙晓峰,胡壮麒.材料工程,2008;(12):46)
[7] Ott M,Mughrabi H.Mater Sci Eng,1999; A272:24
[8] Gayda J,Miner R V.Int J Fatigue,1983; 5(3):135
[9] Anton D L.Acta Metall,1984; 32:1669
[10] Link T,Zabler S,Epishin A,Haibel A,Bansal M,Thibault X.Mater Sci Eng,2006; A425:47
[11] Lecomte-Beckers J.Metall Mater Trans,1988; 19A:2341
[12] Anton D L,Giamei A F.Mater Sci Eng,1985; 76:173
[13] Bokstein B S,Epishin A I,Link T,Esin V A,Rodin A O,Svetlov I L.Scr Mater,2007; 57:801
[14] Toloraya V N,Svetlov I L.Metally,1991; 5:70
[15] Komenda J,Henderson P J.Scr Mater,1997; 37:1821
[16] Epishin A,Link T.Philos Mag,2004; 84:1979
[17] Zhang J,Li J,Jin T,Sun X,Hu Z.J Mater Sci Technol,2010; 26:889
[18] Wilson B C,Cutler E R,Fuchs G E.Mater Sci Eng,2008;A479:356
[19] Liu L R,Jin T,Zhao N R,Wang Z H,Sun X F,Guan H R,Hu Z Q.Mater Lett,2004; 58:2290
[20] Lamm M,Singer R F.Metall Mater Trans,2007; 38A:1177
[21] Fritzemeier L G.In:Duhl D N,Maurer G,Antolovich S,Lund C,Reichman S,eds.,Superalloys 1988,Chamption,PA:TMS,1988:265
[22] Chen Q Z,Kong Y H,Jones C N,Knowles D M.Scr Mater,2004; 51:155
[23] Elliott A J,Pollock T M.Metall Mater Trans,2007; 38A:871
[24] Brundidge C L,Vandrasek D,Wang B,Pollock T M.Metall Mater Trans,2012; 43A:965
[25] Elliott A,Pollock T,Tin S,King W,Huang S C,Gigliotti M.Metall Mater Trans,2004; 35A:3221
[26] Lohmüller A,Eber W,Grobmann J,Hoerdler M,Preuhs J,Singer R.In:Green K A,Pollock T M,Kissinger R D,eds.,Superalloys 2000,Champion,PA:TMS,2000:181
[27] Grossman J,Preuhs J,Esser W,Singer R F.In:Mitchell A,Pidgway L,Baldwin M,eds.,Symposium Liquid Metal Processing Casting,New York,NY:AVS,1999:31
[28] Elliott A J,Feng G,Balsone S J,Schaeffer J C,Pollock T M,Gigliotti M F X.In:Srivatsan T S,ed.,Processing and Fabrication of Advanced Materials XIV With Frontiers in Materials Science 2005,Pittsburgh,PA:TMS,2005,267
[29] Tang W S,Shen J,Wang D W,Zhang J,Lou L H.In:The Minerals,Metals & Materials Society,eds.,TMS 2009138th TMS Annual Meeting and Exhibition Supplemental Proceedings,Vol.1:Materials Proceeding and Properties,San Francisco,CA:TMS,2009:241
[30] Liu C,Li K W,Shen J,Zhang J,Lou L H.Metall Mater Trans,2012; 43A:405
[31] Kurz W,Fisher D J.Acta Metall,1981; 29:11
[32] Feng Q,Carroll L J,Pollock T M.Metall Mater Trans,2006; 37A:1949
[33] Hussain N,Shahid K A,Khan I H,Rahman S.Oxid Met,1995; 43:363
[34] Weber J H,Gilman P S.Scr Metall,1984; 18:479
[35] Rosenstein A,Tien J,Nix W.Metall Mater Trans,1986;17A:151
[36] Levy M,Farrell P,Pettit F.Corrosion,1986; 42:708
[37] Karunaratne M S A,Cox D C,Carter P,Reed R C.In:Green K A,Pollock T M,Kissinger R D,eds.,Superalloys 2000,Champion,PA:TMS,2000:263
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%