为表征2124铝合金的蠕变时效行为,在不同温度和应力状态下进行了一系列蠕变时效实验,并对时效过程中试样的微观组织与力学性能进行了观测.基于实验结果并结合对蠕变机制与时效强化的考虑,建立了适用于2124铝合金的蠕变时效的统一本构模型.模型不仅将宏观的本构关系、力学性能以及微观结构紧密联系起来,而且能够适用于不同的时效温度和应力状态.最后应用模型预测了另一温度下不同应力状态的蠕变应变曲线,与实验结果吻合很好.
参考文献
[1] | Williams J C,Starke E A.Acta Mater,2003; 51:5775 |
[2] | Zhan L,Lin J,Dean T A.Int J Mach Tool Manu,2011;51:1 |
[3] | Liu X Y,Pan Q L,Lu Z L,Cao S F,He Y B,Li W B.Acta Metall Sin,2011; 47:53(刘晓艳,潘清林,陆智伦,曹素芳,何运斌,李文斌.金属学报,2011:47:53) |
[4] | Li C,Wan M,Wu X D,Huang L.Mater Sci Eng,2010;A527:3623 |
[5] | Zhan L,Lin J,Dean T A,Huang M.Int J Mech Sci,2011;53:595 |
[6] | Spigarelli S.Mater Sci Eng,2008; A492:153 |
[7] | Ho K C,Lin J,Dean T A.Int J Plast,2004; 20:733 |
[8] | Ho K C,Lin J,Dean T A.J Mater Process Technol,2004;153-154:122 |
[9] | Li B,Lin J,Yao X.Int J Mech Sci,2002; 44:987 |
[10] | Lin J,Yang J.Int J Plast,1999; 15:1181 |
[11] | Kowalewski Z L.J Strain Anal Eng,1994; 29:309 |
[12] | Muthu K S.Mater Sci Eng,2011; A528:4152 |
[13] | Badini C,Marino F,Verné E.Mater Sci Eng,1995; A191:185 |
[14] | Zhu A W,Starke E A.Acta Mater,1999; 47:3263 |
[15] | Barlat F,Glazov M V,Brem J C.Int J Plast,2002; 18:919 |
[16] | da Costa T J,Cram D G,Bourgeois L,Bastow T J,Hill A J,Hutchinson C R.Acta Mater,2008; 56:6109 |
[17] | Deschamps A,Brechet Y.Acta Mater,1998; 47:293 |
[18] | Myhr O R,Grong φ,Fj(e)r H G,Marioara C D.Acta Mater,2004; 52:4997 |
[19] | Starink M J,Wang P,Sinclair I,Gregson P J.Acta Mater,1999; 47:3855 |
[20] | Liu G,Ding X D,Sun J,Chen K H.Trans Nonferrous Met Soc China,2001; 11:337 |
[21] | Liu G,Zhang G J,Ding X D,Sun J,Chen K H.Mater Sci Eng,2003; A344:113 |
[22] | Nie J F,Muddle B C.Acta Mater,2008; 56:3490 |
[23] | Barlat F,Glazov M V,Brem J C,Lege D J.Int J Plast,2002; 18:919 |
[24] | Esmaeili S,Lloyd D J,Poole W J.Acta Mater,2003; 51:2243 |
[25] | Cao J,Lin J.Int J Mech Sci,2008; 50:193 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%