欢迎登录材料期刊网

材料期刊网

高级检索

采用包套近等温热挤压得到Ti-45.5Al-2Cr-2Nb-0.15B合金棒材.结合有限元数值模拟,研究了挤压变形组织的形成及各部位差异,获得了棒材不同部位组织与室温拉伸性能的关系.结果表明,热挤压变形有效细化了片层晶粒尺寸,棒材轴向各部位组织和室温断后延伸率较为均匀,但径向芯部与边缘差别较大,且这种径向组织性能差异未能通过后续α单相固溶热处理消除.挤压棒材各部位片层晶粒尺寸随有效应变的增大而减小,本工作所得挤压棒材中有效应变大于2.25处具有细小均匀组织,而组织类型差异主要由变形过程中的坯料温度变化所致,其中尾部边缘坯料温度受低温模具激冷作用而迅速下降,相应亚稳α相分解析出γ片层并在后续变形中失稳弯曲而形成界面扭曲的残余片层晶粒.各部位的断后延伸率随片层晶粒尺寸的增大而减小,但芯部断后延伸率较低主要归因于组织中存在片层界面与挤压方向接近垂直的片层晶粒.

参考文献

[1] Dimiduk D M.Mater Sci Eng,1999; A263:281
[2] Appel F,Brossmann U,Christoph U,Eggert S,Janschek P,Lorenz U,Mullauer J,Oehring M,Paul J D H.Adv Eng Mater,2000; 2:699
[3] Appel F,Oehring M,Paul J D H,Klinkenberg C,Carneiro T.Intermetallics,2004; 12:791
[4] Kim Y W.Acta Metall Mater,1992; 40:1121
[5] Koeppe C,Bartels A,Seeger J,Mecking H.Metall Mater Trans,1993; 24A:1795
[6] Seetharaman V,Malas J C,Lombard C M.In:Johnson L A,Pope D P,Stiegler J O eds.,High-Temperature Ordered Intermetallic Alloys IV.Boston,MA:MRS,1991:889
[7] Semiatin S L,Seetharaman V,Jain V K.Metall Mater Trans,1994; 25A:2753
[8] Semiatin S L.In:Kim Y W,Wagner R,Yamaguchi M eds.,Gamma Titanium Aluminides 1995.Las Vegas,NV:TMS,1995:509
[9] Oehring M,Lorenz U,Niefanger R,Christoph U,Appel F,Wagner R,Clemens H,Eberhardt N.In:Kim Y W,Dimiduk D M,Loretto M H eds.,Gamma Titanium Aluminides 1999.San Diego,CA:TMS,1999:439
[10] Xie J X,Liu J A.Metal Extrusion:Fundamental and Technology.Beijing:Metallurgical Industry Press,2002:8(谢建新,刘静安.金属挤压理论与技术.北京:冶金工业出版社,2002:8)
[11] Liu C T,Schneibel J H,Maziasz P J,Wright J L,Easton D S.lntermetallics,1996; 4:429
[12] Goetz R,Jain V,Lombard C.J Mater Process Technol,1992; 35:37
[13] Liu D.PhD Dissertation,Institute of Metal Research,Chineses Academy of Sciences,Shenyang,2007(刘冬/中国科学院金属研究所博士学位论文,沈阳,2007)
[14] Cui Y Y.PhD Dissertation,Institute of Metal Research,Chineses Academy of Sciences,Shenyang,2004(崔玉友/中国科学院金属研究所博士学位论文,沈阳,2004)
[15] Bai C G.PhD Dissertation,Institute of Metal Research,Chineses Academy of Sciences,Shenyang,2007(柏春光/中国科学院金属研究所博士学位论文,沈阳,2007)
[16] Goetz R L,Semiatin S L.J Mater Eng Perfor,2001; 10:710
[17] Seetharaman V,Semiatin S L.Metall Mater Trans,1996;27A:1987
[18] Kim Y W,Dimiduk D M.In:Hemker K J,Dimiduk D M,Clemens D,Darolio R,Inui H,Larson J M,Sikka V K,Thomas M,Whittenberger J D eds.,Structural Intermetallics 2001.Wyoming:TMS,2001:625
[19] Semiatin S,Dimiduk D M,Ashbee K,Seetharaman V.Metall Mater Trans,1998; 29A:7
[20] Maziasz P,Liu C T.Metall Mater Trans,1998; 29A:105
[21] Kim Y W.Mater Sci Eng,1995; A192-193:519
[22] Fuchs G E.In:Kim Y W,Wagner R,Yamaguchi M eds.,Gamma Titanium Aluminides 1995.Las Vegas,NV:TMS,1995:563
[23] Fuchs G E.Metall Mater Trans,1998; 29A:27
[24] Inui H,Oh M H,Nakamura A,Yamaguchi M.Acta Metall Mater,1992; 40:3095
[25] Umakoshi Y,Nakano T.Acta Metall Mater,1993; 41:1155
[26] Leyens C,Peters M,translated by Chen Z H.Titanium and Titanium Alloy.Beijing:Chemical Industry Press,2005:88(Leyens C,Peters M著,陈振华译.钛与钛合金.北京:化学工业出版社,2005:88)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%