通过化学溶液沉积法制备了Er3-Tm3+-Yb3+共掺杂的Bi4Ti3O12薄膜,并研究了薄膜的上转换荧光和铁电性能.在980 nm红外光的激发下,薄膜的室温发射光谱在可见光区域显示出4个发射带,分别是峰值为478 nm的蓝光发射带,对应Tm3+的1G4→3H6能级跃迁;峰值为527和548 nm的绿光发射带,对应Er3+的2H11/2→4I15/2和4S3/2→4I15/2能级跃迁;峰值为657 nm的红光发射带,由Er3+的4F9/2→4I15/2和Tm3+的1G4→3F4能级跃迁产生的发射带复合而成.荧光的颜色可以通过改变Er3+,Tm3+,Yb3+离子的掺杂浓度加以调节.在固定Tm3+,Yb3+浓度的Bi3.59-xErxTm001Yb04Ti3O12(BErxTYT)薄膜中,随着Er3+浓度的增加,红、蓝光和绿、蓝光的强度比均增加,Er3+离子的淬灭浓度为1.75‰(摩尔分数,下同);在固定Er3+,Yb3+浓度的Bi3.593-yEr0.007TmyYb0.4Ti3O12(BETmyYT)薄膜中,随着Tm3+浓度的增加,绿、蓝光和红、蓝光的强度比均降低,Tm3+的淬灭浓度为2.5‰;在固定Er3+,Tm3+浓度的Bi3.98-zEr0.01Tm0.01YbzTi3O12(BETYbzT)薄膜中,随着Yb3+浓度的增加,蓝、绿光和红、绿光的强度比均增加,Yb3+对Er3+发射的荧光淬灭浓度小于5%,而对Tm3+发射的荧光淬灭浓度大于18%.Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12薄膜上转换荧光值为(0.31,0.34),最接近标准白光的色度坐标(0.33,0.33).在不同功率的红外激光激发下,薄膜荧光的色度坐标变化幅度很小,说明薄膜具有较好的颜色稳定性.通过分析薄膜荧光的上转换机制,从Er3+向Tm3+有明显的能量传递发生,使光谱中红、绿、蓝光的相对强度和稀土离子的淬灭浓度发生明显变化.薄膜的铁电性能测试表明,当Er3+,Tm3-,Yb3+掺杂的总浓度约为10%时(Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12),薄膜的铁电剩余极化强度达到最大值,为27.8 μC/cm2.
参考文献
[1] | Hou X R,Zhou S M,Jia T T,Lin H,Teng H.JAlloys Compd,2011; 509:2793 |
[2] | Chen D Q,Wang Y S,Zheng K L,Guo T L,Yu Y L,Huang P.Appl Phys Lett,2007; 91:251903 |
[3] | Wang F,Deng R R,Wang J,Wang Q X,Han Y,Zhu H M,Chen X Y,Liu X G.NatMater,2011; 10:968 |
[4] | Sivakumar S,Van Veggel F C,Raudsepp M.J Am Chem Soc,2005; 127:12464 |
[5] | Van der Ende B M,Aarts L,Meijerink A.Phys Chem Chem Phys,2009; 11:11081 |
[6] | Wang D Y,Yin M,Xia S D,Makhov V N,Khaidukov N M,Krupa J C.J Alloys Compd,2004; 368:337 |
[7] | Xu C F,Ma M,Zeng S J,Ren G Z,Yang L W,Yang Q B.J Alloys Compd,2011; 509:7943 |
[8] | Wang F,Han Y,Lim C S,Lu Y H,Wang J,Xu J,Chen H Y,Zhang C,Hong M H,Liu X G.Nat Lett,2010; 463:1061 |
[9] | Gandhi Y,Ramachandra R M V,Srinvasa R C,Srikumar T,Kityk I V,Veeraiah N.JApplPhys,2010; 108:023102 |
[10] | Liu F,Ma E,Chen D Q,YuY L,Wang Y S.JPhys Chem,2006;110B:20843 |
[11] | Chen X Q,Li Y L,Kong F,Li L P,Sun Q,Wang F P.J Alloys Compd,2012; 541:505 |
[12] | Gao F,Ding G J,Zhou H,Wu G H,Qin N,Bao D H.J Electrochem Soc,2011; 158:G128 |
[13] | Gao F,Zhang Q Y,Ding G J,Qin N,Bao D H.JAm Ceram Soc,2011; 94:3867 |
[14] | Wang R,Liu L,Sun J C,Qian Y N,Zhang Y S,Xu Y L.Opt Commun,2012; 285:957 |
[15] | Wang H S,Duan C K,Tanner P A.J Phys Chem,2008; 112C:16651 |
[16] | Zhou H,Wu G H,Gao F,Qin N,Bao D H.IEEE T Ultrason Ferr,2010; 57:2134 |
[17] | Ruan K B,Chen X M,Liang T,Wu G H,Bao D H.J Appl Phys,2008; 103:074101 |
[18] | Gunawan L,Lazar S,Gautreau O,Harnagea C,Pignolet A,Botton GA.ApplPhysLett,2009; 95:192902 |
[19] | Watanabe T,Funakubo H,Osada M,Uchida H,Okada I.JAppl Phys,2005; 98:024110 |
[20] | Guo D Y,Li M Y,Wang J,Liu J,Yu B F,Yang B.Appl Phys Lett,2007; 91:232905 |
[21] | Wyszecki G,Stiles W S.Color Science:Concepts and Methods,Quantitative Data and Formulae.Hoboken:John Wiley & Sons Inc,2000:130 |
[22] | Ajroud M,Haouari M,Ben Ouada H,M(a)aref H,Brenier A,Champagnon B.MaterSciEng,2006; C26:523 |
[23] | Oliveira R C,Cavalcante L S,Sczancoski J C,Aguiar E C,Espinosa J W M,Varela J A,Pizani P S,Longo E.J Alloys Compd,2009; 478:661 |
[24] | Ding G J,Gao F,Wu G H,Bao D H.JApplPhys,2011; 109:123101 |
[25] | Das G K,Tan T T Y.JPhys Chem,2008; 112C:11211 |
[26] | Yeh D C,Petrin R R,Sibley W A,Madigou V,Adam J L,Suscavage M J.Phys Rey,1989; 39B:80 |
[27] | Xiao Z S,Sema R,Afonso C N.JApplPhys,2007; 101:033112 |
[28] | Chan E M,Gargas D J,Schuck P J,Milliron D J.J Phys Chem,2012; 116B:10561 |
[29] | Seo S Y,Shin J H,Bae B S,Park N,Penninkhof J J,Polman A.Appl Phys Lett,2003; 82:3445 |
[30] | Pollnau M,Gamelin D R,Lüthi S R,Güdel H U,Hehlen M P.Phys Rev,2000; 61B:3337 |
[31] | Ostermayer Jr F W,Van der Ziel J P,Marcos H M,Van Uitert L G,Geusic J E.PhysRev,1971; 3B:2698 |
[32] | Vetrone F,Boyer J C,Capobianco J A,Speghini A,Bettinelli M.J ApplPhys,2004; 96:661 |
[33] | Sun H T,Xu S Q,Dai S X,Zhang J J,Hu L L,Jiang Z H.Solid State Commun,2004; 132:193 |
[34] | Sun H T,Yu C L,Duan Z C,Wen L,Zhang J J,Hu L L,Dai S X.Opt Mater,2006; 28:448 |
[35] | Gao F,Wu G H,Zhou H,Bao D H.JApplPhys,2009; 106:12610 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%