欢迎登录材料期刊网

材料期刊网

高级检索

利用固相反应制备了直径为70mm, 厚度为10~15mm高质量掺杂Li2CO2的ZnO陶瓷靶材, 实验了不同摩尔浓度的Li+掺杂对靶材性能的影响, 确定了最佳Li+掺杂量为2.2mol%, 同时通过在不同温度烧结实验、不同成型压力实验确定了ZnO靶材制备的最佳工艺, 并采用所制备的ZnO-Li2.2%陶瓷靶和RF(射频磁控)技术在Si(100)、玻璃(载玻片)、及Pt(111)/Ti/SiO2/Si(100)基片上制备出高度c轴(002)择优取向的ZnO薄膜, 其绝缘电阻率ρ为4.12×108Ω·cm, 达到了声表面波器件(SAW)的使用要求.

We successfully prepared high quality Li-doped ZnO ceramic targets with 70mm in diameter and 10~15mm in depth by solid-state reactions. The paper studied the influence of different concentration of Li2CO3 on the electrical properties of ZnO ceramic target. By comparing and analyzing the IR( insulative resistivity ) and tgδ(dielectric loss), the optimum concentration of Li2CO3 doped in ZnO ceramic target was obtained(2.2%mol ratio). And the optimum process for preparing ZnO-Li2.2% ceramic target was also realized through the investigation of physics and electrics of ZnO ceramic under the different sintering temperatures and molding pressure treatments. By using Li2.2%-doped ZnO ceramic as the target, the ZnO films with highly c-axis (002) preferred orientation were grown by RF magnetron sputtering on Si(100), glass and Pt(111)/Ti/SiO2/Si(100) substrates respectively.

参考文献

[1]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%