欢迎登录材料期刊网

材料期刊网

高级检索

采用射频磁控溅射法制备了HA(+ZrO2+Y2O3)/Ti6Al4V 生物复合涂层. 借助于XRD、SEM、FTIR和AFM等对溅射涂层的相组成、微观形貌和界面结合进行了研究, 并以模拟体液试验探讨了涂层的生物活性. 实验结果表明: 磁控溅射的复合涂层呈非晶态, 经过退火处理, 可以使其转化为晶态; 复合涂层的微观表面凹凸不平, 并呈现网状结构和较多的孔隙, 其孔隙直径约为0.5~2.0μm, 孔隙面积占涂层表面积的30%~40%; HA(+ZrO2+Y2O3)/Ti6Al4V 复合涂层的界面结合强度随(ZrO2+Y2O3)复合颗粒含量的增大和溅射功率的提高而增强, 最高可达59.6MPa. 复合涂层在模拟体液中浸泡一段时间后, 表面覆盖一层新生物质---含有CO32-的类骨磷灰石, 其晶粒非常小, 它与自然骨中无机相的结构成分相似, 表明复合涂层具有良好的生物活性.

HA(+ZrO2+Y2O3)/Ti6Al4V composite coatings were fabricated successfully by radio-frequency magnetron sputtering RF-MS technique. The surface and interface morphologies, phase composition and chemical structure of the composite coatings were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Experimental results show that the amorphous coating deposited by RF-MS can be transferred into that with crystalline structure and restored OH- group by
post-annealing. The surface morphology of composite coatings is coarse
and uneven with the well-distributed concaves. The average diameter of
these concaves is in the range of 0.5~2.0μm, and the surface area of
these concaves is about 30%~40%. These concaves will greatly increase
the micro-surface area of coating. Interfacial tensile test indicates that
the interfacial bond strength between HA(+ZrO2+Y2O3)/Ti6Al4V composite coating and substrate is 59.6MPa. Furthermore, the bond strength of HA(+ZrO2+Y2O3)/Ti6Al4V composite coatings is enhanced with the increasing of sputtering power. Results of simulated body fluid (SBF) test indicate that a new substance on the surface of HA(+ZrO2+Y2O3)composite coating will be produced after the composite coating immersed in simulated body fluid (SBF), this substance is bone-like apatite containing CO32- group and has very small grain size and amorphous structure, its structure and composition are similar to those of natural bone. Thus, HA(+ZrO2+Y2O3)/Ti6Al4V composite coatings have good biocompatibility and bioactivity.

参考文献

[1] Keller L, Dollase W A. Journal of Biomedical Materials Research, 2000, 49 (2): 244--249.
[2] Ha S W, Mayer J, Koch B, . Journal of Materials Science: Materials in Medicine, 1994, 5 (6-7): 481--484.
[3] 憨勇, 徐可为.硅酸盐通报, 1997, 5: 47--49.
[4] Manso M, Jimenez C, Morant C, . Biomaterials, 2000, 21 (17): 1755--1761.
[5] Nelea V, Morosanu C, Iliescu M, . Applied Surface Science, 2004, 228: 346--356.
[6] Hsieh M F, Perng L H, Chin T S. Materials Chemistry and Physics, 2002, 74 (3): 245--250.
[7] 郑学斌, 丁传贤(ZHEN Xue-Bin, et al).无机材料学报(Journal of Inorganic Materials), 2000, 15 (2): 341--346.
[8] Dijk V, Schaeken K, Wolke, . Journal of Biomedical Materials Research, 1995, 29 (2): 269--276.
[9] Jansen J A, Wolke J G C, Swann S, . Clinical Oral Implants Research, 1993, 4: 28--34.
[10] Ding S J, Ju C P, Lin J H C. Journal of Biomedical Materials Research, 1999, 44 (3): 266--279.
[11] Ding S J, Lee T L, Chu Y H. Journal of materials Science Letters, 2003, 22: 479--482.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%