欢迎登录材料期刊网

材料期刊网

高级检索

采用高分辨透射电子显微镜对高硬度的TiN/Si3N4纳米晶复合膜的观察发现, 这类薄膜的微结构与Veprek提出的nc-TiN/a-Si3N4模型有很大不同: 复合膜中的TiN晶粒为平均直径约10nm的柱状晶, 存在于柱晶之间的Si3N4界面相厚度为0.5~0.7nm, 呈现晶体态, 并与TiN形成共格界面. 进一步采用二维结构的TiN/Si3N4纳米多层膜的模拟研究表明,Si3N4层在厚度约<0.7nm时因TiN层晶体结构的模板作用而晶化, 并与TiN层形成共格外延生长结构, 多层膜相应产生硬度升高的超硬效应. 由于TiN晶体层模板效应的短程性, Si3N4层随厚度微小增加到1.0nm后即转变为非晶态, 其与TiN的共格界面因而遭到破坏, 多层膜的硬度也随之迅速降低. 基于以上结果, 本文对TiN/Si3N4纳米晶复合膜的强化机制提出了一种不同于nc-TiN/a-Si3N4模型的新解释.

A microstructure investigation of TiN/Si3N4 nanocomposite films with high hardness was performed by means of high-resolution transmission electron microscope, and a result far from the nc-TiN/a-Si3N4 model was presented. Instead of the isotropic one, TiN was pronounced nanocrystalline columnar grains with dimensions of <10nm in width and >100nm in length. Immiscible Si3N4 interfacial phases between TiN nanocolumns with a thickness of about 0.5--0.7nm existed in nanocrystalline structure and formed coherent interfaces with adjacent TiN nanocrystals. A succedent simulation employing two-dimensional TiN/Si3N4 nanomultilayers also implied that due to the template effect of crystalline TiN layers, sputter-deposited amorphous Si3N4 was forced to crystallize and grow epitaxially with TiN layers when its thickness was less than 0.7nm, accompanied by a significant enhancement in film’s hardness. Due to the short-range nature of the template effect of TiN layers, the
crystalline Si3N4 gradually transformed into amorphous when its thickness exceeded 1.0nm and the coherent interfaces were destroyed as a consequence, with a simultaneous film’s hardness decline. By comparing the microstructure and corresponding hardness response of TiN/Si3N4 nanocomposite films with that of the nanomultilayered ones, a new explanation on hardening mechanism of TiN/Si3N4 nanocomposites was proposed.

参考文献

[1] Veprek S, Niederhofer A, Moto K, et al. Surf. Coat. Technol., 2000, 133-134: 152--159.
[2] Veprek S, Reiprich S, Li S Z Appl. Phys. Lett., 1995, 66: 2640--2642.
[3] Prochazka J, Karvankova, Martiza G J, et al. Mater. Sci. Eng. A. 2004, 384: 102--109.
[4] 张晨辉, 雒建斌, 李文治, 等. 物理学报, 2004, 53: 182--187.
[5] Veprek S, Maritza G J, Heijman V, et al. Thin Solid Films, 2005, 476: 1--29.
[6] Christiansen S, Albrecht M, Strunk H P, et al. J. Vac. Sci. Technol., 1998, B (16): 19--22.
[7] Niederhofer A, Bolom T, Nesladek P, et al. Surf. Coat. Technol., 2001, 146-147: 183--188.
[8] Meng W J, Zhang X D, Shi B, et al. Surf. Coat. Technol., 2003, 163-164: 251--259.
[9] Kauffmann F, Dehm G, Schier V, et al. Thin Solid Films, 2005, 473: 114--122.
[10] Hu X P, Han Z H, Li G Y, et al. J. Vac. Sci. Technol., 2002, A (20): 1921--1926.
[11] 田家万, 韩增虎, 赖倩茜, 等. 机械工程学报, 2003, 39 (6): 71--74.
[12] Veprek S, Karvankova P, Maritza G J, et al. J. Vac. Sci. Technol., B 2005, 23 (6): L17.
[13] 劳技军, 孔明, 张惠娟, 等. 物理学报, 2004, 53 (6): 1961--1966.
[14] 魏仑, 梅芳华, 邵楠, 等. 物理学报, 2005, 54 (4): 1742--1747.
[15] 吴大维, 付德君, 毛先唯, 等. 物理学报, 1999, 48 (5): 904--908.
[16] Zhang Z Y, Lagally M G. Science, 1997, 276: 377--383.
[17] Koehler J S. Phys. Rev. B, 1970, 2: 547--550.
[18] Andson P M, Li C. Nanostructured Mate, 1995, 5: 349--362.
[19] Chu X, Barnett. Thin Films, 1995, 382: 291--296.
[20] Sooderberg H, Odéen M, Molina-Aldareguia J M, et al. J. Appl. Phys., 2005, 97 (114327): 1--8.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%