欢迎登录材料期刊网

材料期刊网

高级检索

以高纯氧化物商业粉体为原料, 采用固相反应和真空烧结技术, 制备了高质量的1.3at%Nd:YAG透明陶瓷. 研究了室温下Nd:YAG透明陶瓷的显微结构、光谱及激光性能. 实验结果表明, Nd:YAG透明陶瓷主要以穿晶方式断裂; 平均晶粒尺寸为15μm, 且分布均匀; 晶粒中和晶界处没有检测到杂质和气孔存在, 且成分一致, 无偏析现象. 退火后样品在激光波长1064nm处的透过率高达82.4%; 主吸收峰位于808.6nm处, 峰值吸收系数为4.45cm-1, 激光波长1064nm处的吸收系数为0.11cm-1; 主荧光发射峰位于1064nm处, 半高宽为0.82nm, 荧光寿命为258μs. 用LD端面泵浦Nd:YAG陶瓷样品(泵浦源最大输出功率为1000mW), 获得了波长为1064nm的连续激光输出, 激光阈值约530mW, 斜率效率为23.2%, 最大泵浦吸收功率为731mW时, 最大输出功率为45mW.

High-quality 1.3at% neodymium-doped yttrium aluminum garnet (Nd:YAG) transparent ceramic was fabricated by a solid-state reaction method and vacuum sintering using high-purity α-Al2O3, Y2O3 and Nd2O3 as raw materials with tetraethoxysilane (TEOS) as sintering aid. The microstructure, the spectral property and the laser performance of the prepared Nd:YAG ceramic were studied. It is found that the sample exhibits pore-free structure with average grain size of 15μm. There is no secondary phase in the grain boundary and grain. Transmittance of the sample after annealing reaches 82.4% at the laser wavelength of 1064nm. The highest absorption peak is centered at 808.6nm and the absorption coefficient is 4.45cm-1. The peak absorption coefficient at laser wavelength of 1064nm is 0.11cm-1. The FWHM of 1064nm main emission peak is 0.82nm, and the fluorescence lifetime is 258μs. A laser diode (808nm) was used as pump source whose maximium output was 1000mW, and end-pumped laser experiment was demonstrated on 1.3at%Nd:YAG ceramic. The sample for laser testing is phi16mmtimes2.8mm in dimension, mirror-polished on both sides and without coating. With 731mW of maxiμm absorbed pump power, laser output of 45mW is obtained with slope efficiency of 23.2%. The laser threshold is 530mW.

参考文献

[1] Carnall E, Hatch S E, Parsons W F. Mater. Sci. Res., 1966, 3: 165-173.
[2] Anderson R C. Transparent zirconia-, hafnia-, and thoria-rare earth ceramics. U. S. Patent: 3640887, 1972.
[3] Greskovich C, Chernoch J P. J. Appl. Phys., 1973, 44 (10): 4599--4606.
[4] Greskovich C, Chernoch J P. J. Appl. Phys., 1973, 45 (10): 4495--4502.
[5] Ikesue A, Kinoshita T, Kamata K, et al. J. Am. Ceram. Soc., 1995, 78 (4): 1033--1040.
[6] Lu J, Song J, Prabhu M, et al. Jpn. J. Appl. Phys., 2000, 39: L1048--L1050.
[7] Lu J, Ueda K, Yagi H, et al. J. Alloy Comp., 2002, 341 (1-2): 220--225.
[8] Lu J, Lu J, μrai T, et al. Jpn. J. Appl. Phys., 2001, 40: L1277--L1279.
[9] Lu J, Takaichi K, Uematsu T, et al. Appl. Phys. Lett., 2002, 81 (23): 4324--4326.
[10] Lu J, Bisson J F, Takaichi K, et al. Appl. Phys. Lett., 2003, 83 (6): 1101--1103.
[11] Takaichi K, Yagi H, Lu J, et al. Appl. Phys. Lett., 2004, 84 (3): 317--319. [12] Saikawa J, Sato Y, Taira T, et al. Appl. Phys. Lett., 2004, 85 (11): 1898--1900.
[13] 任国光, 黄吉金. 激光与光电子进展, 2006, 43 (6): 3--9.
[14] Zhang J J, Ning J W, Liu X J, et al. J. Mater. Sci. Lett., 2003, 22 (1): 13--14.
[15] Zhang J J, Ning J W, Liu X J, et al. Mater. Res. Bull., 2003, 38 (15): 1249--1256.
[16] Zhang J J, Ning J W, Liu X J, et al. Mater. Lett., 2003, 57 (20): 3077--3081.
[17] 李江, 潘裕柏, 张俊计, 等(LI Jiang, et al). 硅酸盐学报, 2003, 31 (5): 490--493.
[18] 李江, 邱发贵, 潘裕柏, 等. 稀有金属材料与工程, 2004, 33 (增刊3): 88--92.
[19] 李江, 邱发贵, 孙兴伟, 等. 功能材料, 2004, 35 (增刊): 367--370.
[20] Qiu F G, Pu X P, Li J, et al. Ceram. Int., 2005, 31 (5): 663--665.
[21] Qiu F G, Pu X P, Zhang R, et al. Key Eng. Mater., 2005, 280-283: 717--719.
[22] Li J, Wu Y S, Pan Y B, et al. J. Non-Cryst. Solids, 2006, 352 (23-25): 2404--2407.
[23] Wu Y S, Li J, Pan Y B, et al. Ceram. Int., 2006, 32 (7): 785--788.
[24] Li J, Pan Y B, Qiu F G, et al. Ceram. Int., 2006, doi: 10.1016/j.ceramint.2006.03.002. [25] Li J, Pan Y B, Qiu F G, et al. Ceram. Int., 2006, doi: 10.1016/j.ceramint. 2006.09.002. [26] 李江, 吴玉松, 潘裕柏, 等. 发光学报, 2007, 28 (2): 219--224.
[27] 潘裕柏, 徐军, 吴玉松, 等(PAN Yu-Bai, et al).无机材料学报, 2006, 21 (5): 1278--1280.

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%