欢迎登录材料期刊网

材料期刊网

高级检索

采用机械化学法, 利用离子交换反应, 通过离子交换、层离和沉淀过程制备了高比表面积的H 2Ti4O9纳米晶体. 采用XRD、TEM、热分析、N2吸附-脱附等温过程和吸收光谱对制备的H2 Ti4O9纳米晶体进行了表征. 结果表明, 以TiO2纳米晶片形式存在的微晶Ti4O92-, 其径向尺寸低于50nm, 纳米晶片的比表面积取决于反应溶液的pH值和对前驱物K2Ti4O9 球磨的时间. 将K2Ti4O9球磨2h后悬浮于1mol/L HCl溶液中搅拌, 进行离子交换反应, 最后将溶液pH值调整至8, 沉淀后所得产物H2Ti4O9 的比表面积达328.4m2·g-1.

H2Ti4O9 nanocrystals with high specific surface areas were prepared by delamination and precipitation process through ball milling combined with ion exchange reaction. The samples were characterized by X-ray powder diffraction, transmission electron microscope, thermal analysis, N2 adsorption-desorption isotherm, and absorption spectrum. The crystallites of Ti4O92- in the form of titania nanosheets have lateral size less than 50nm. The specific surface area of H2 Ti4O9 nanocrystals depends on pH values of precipitation solution and ball milling time. The specific surface area of H2 Ti4O9 nanocrystals prepared by ball-milling of K2Ti4O9 for 2h and suspending in 1mol/L HCl followed by precipitation at pH=8 can reach 328.4m2·g-1.

参考文献

[1] Izawa H, Kikkawa S, Koizumi M. J. Phys. Chem., 1982, 86 (25): 5023--5026. [2] Airoldi C, Nunes L M, Farias R F. Mater. Res. Bull., 2000, 35 (13): 2081--2090.
[3] Hou W, Yan H Q, Peng B, et al. J. Mater. Chem., 1995, 5 (1): 109--114.
[4] Wang Z S, Sasaki T, Maramatsu M, et al. Chem. Mater., 2003, 15 (3): 807--812.
[5] Liu Z H, Yang X, Makita Y, et al. Chem. Mater., 2002, 14 (11): 4800--4806.
[6] Schaak R E, Mallouk T E. Chem. Mater., 2000, 12 (11): 3427--3434.
[7] Ogawa M, Takizawa Y. Chem. Mater., 1999, 11 (1): 30--32.
[8] Ebina Y, Sasaki T, Harada M, et al. Chem. Mater., 2002, 14 (10): 4390--4395.
[9] Sukpirom N, Lerner M M. Mater. Sci. Eng. A, 2002, 333 (2): 218--222.
[10] Huinier A. X-ray Diffraction, Freeman, SanFrancisco, 1963. 134.
[11] Vossmeyer T, Katsikas L, Giersig M, et al. J. Phys. Chem., 1994, 98 (31): 7665--7673.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%