欢迎登录材料期刊网

材料期刊网

高级检索

以常见的表面活性剂油酸钠作为表面改性剂, 通过油酸根离子中的脂肪烃链与高温油相法制备的Fe3O4纳米粒子表面的亲油性基团之间的范德华力作用, 将分散在油相中的Fe3O4纳米粒子转移到水相中. 研究了油酸钠浓度、油相中Fe3O4纳米粒子含量、pH值及温度等条件对改性结果的影响; 用穆斯堡尔谱仪(Mossbauer)、透射电镜(TEM)、傅立叶红外光谱(FT-IR)等方法对改性前后的样品进行了表征. 结果表明: 本方法可有效地将油相法制备的Fe3O4纳米粒子从油相中转移到水相. 当油酸钠浓度为3mmol/L、Fe3O4纳米粒子在正己烷中浓度为12.28mg·mL-1、 pH为8.6且温度为60℃时, 转移率最高可达86%, 改性后粒子在水相中的含量最高可达10.5mg·mL-1; 改性后磁性粒子在水相中含量较低时, 能够稳定分散较长时间.

Sodium oleate was used as surface modification agent to modify Fe3O4 nanoparticles prepared in high temperature organic solution. Fe3O4 nanoparticles were transferred from organic phase to aqueous solution by the van der Waals interaction between the long aliphatic chain of oleate anion and the hydrophobic groups in the surface of Fe3 O4 nanoparticles. Effects of concentration of sodium oleate, pH and temperature on surface modification of Fe3O4 nanoparticles were investigated. Mossbauer spectroscopy, Transmission electron microscopy (TEM) and Fourier transform-infrared (FT-IR) spectroscopy were used to characterize samples before and after modification. The results show that the method is effective in ransferring Fe3O4 nanoparticles from organic phase to aqueous solution. The ratio of Fe3O4 anoparticles transferred from organic phase is as high as 86% and the content of ransferred Fe3O4 nanoparticles in aqueous solution is 10.5mg·mL-1 on condition that the concertration of sodium oleate solution is 3mmol/L, the content of Fe3O4 nanoparticles in n-hexane is 12.28mg·mL-1, pH is 8.6,temperature is 60℃, respectively. The surface modified Fe3O4 nanoparticles with low concentration in aqueous solution can stably disperse in aqueous solution for a long time.

参考文献

[1] Cui D X, Gao H J. Biotechnol. Prog., 2003, 19: 683--692.
[2] Torchilin V P. Advanced Drug Delivery Reviews, 1995, 17: 75--101.
[3] Devineni D, Blanton C D, Gallo J M. Bioconjugate Chem., 1995, 6: 203--210. [4] Taylor J I, Hust C D, Davies M J. J. Chromatogr A, 2000, 890: 156--166.
[5] Honda H, Kawabe A, Shinkai M, et al. J. Ferment Bioeng, 1998, 86 (2): 191--196.
[6] 甘志锋, 姜继森. 化学进展, 2005, 17 (6): 978--986.
[7] Wang Y, Wong J F, Teng X W. Nano Letters, 2003, 3 (11): 1555--1559.
[8] Jun Y W, Huh Y M, Choi J S. J. Am. Chem. Soc., 2005, 127: 5732--5733.
[9] Euliss L E, Grancharov S G, Brien S O. Nano Letters, 2003, 3 (11): 1489--1493.
[10] Li Z, Chen H, Bao H B. Chemistry of Materials, 2004, 16 (8): 1391--1393.
[11] Park J, An K J, Hwang Y S. Nature Materials, 2004, 3: 891--895.
[12] 马如璋, 吴兵, 李玉璞. 穆斯堡尔谱学手册. 北京: 冶金工业出版社, 1988.369.
[13] 蒋新宇, 周春山, 张俊山. 中南工业大学学报, 2003, 34 (5): 516--520.
[14] 董庆年. 红外光谱法. 北京: 石油化学工业出版社, 1977. 108--111.
[15] 赵振国. 吸附作用应用原理. 北京: 化学工业出版社, 2005. 235.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%