欢迎登录材料期刊网

材料期刊网

高级检索

以CoCl2, SbCl3和Te粉为原料, NaBH4为还原剂, 用溶剂热方法合成了Te掺杂方钴矿CoSb3-xTex(x=0, 0.05, 0.1, 0.2, 0.4)纳米粉末. 研究发现, Te含量较高的样品(x≥0.2)有明显的CoTe2等杂相存在. CoSb3-xTex合成粉末的粒径大小在40nm左右, 热压后晶粒发生长大, 平均晶粒尺寸约为300nm. 电学性能测试表明Te掺杂方钴矿CoSb3-xTex的导电类型为n型, Seebeck系数的绝对值随着Te含量的增加而变小, 电导率随着Te含量的增加而增大. 在测试温度范围内, CoSb2.8Te0.2 具有最高的功率因子, 在773K温度下达到2.3×103W·m-1·K-2.

Nanosized Te-doped skutterudites CoSb3-xTex (x=0, 0.05, 0.1, 0.2, 0.4) were prepared by a solvothermal method using CoCl2, SbCl3 and pure telluride powder as precursors and NaBH4 as reductant. It is found that trace of other impurity phases such as CoTe2 are coexisted for x≥0.2. The size of synthesized CoSb3-xTex powders is about 40nm, and the grains are grown up to an average size of about 300nm after hot-pressing. Transport properties measurements indicate that the Te-doped CoSb3-xTex have n-type conduction. As the Te fraction increases, the values of electrical conductivity increase, while the absolute Seebeck coefficient values decrease. A maximum power factor of 2.3×10-3W·m-1·K-2 is obtained at 773K for CoSb2.8Te0.2.

参考文献

[1] Sales B C, Mandrus D, Williams R K. Science, 1996, 272 (5266): 1325--1327.
[2] Tritt T M. Science, 1999, 283 (5403): 804--805.
[3] Lamberton G A Jr, Tedstrom R H, Tritt T M, et al. J. Appl. Phys., 2005, 97 (11): 13715. [4] Sales B C, Mandrus D, Chakoumakos B C, et al. Phy. Rev. B, 1997, 56 (23): 15081--15089.
[5] Shi X, Zhang W, Chen L D, et al. Phy. Rev. Lett., 2005, 95 (18): 185503.
[6] Jung D, Whangbo M H, Alvarez S. Inorg. Chem., 1990, 29 (12): 2252--2255.
[7] Sharp J W, Jones E C, Williams R K, et al. J. Appl. Phys., 1995, 78 (2): 1013--1018.
[8] Wojciechowski K T, Tobola J, Leszczynski J. J. Alloys Compd., 2003, 361: 19--27.
[9] Li X Y, Chen L D, Fan J F, et al. J. Appl. Phys., 2005, 98 (8): 083702.
[10] 赵雪盈, 史迅, 陈立东, 等(Zhao Xue-Ying, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 392--396.
[11] Caillat T, Kulleck J, Borshchevsky A. J. Appl. Phys., 1996, 79 (11): 8419--8426.
[12] Sharp J W, Goldsmid H J. Proc. 18th Inter. Conf. Thermoelectrics, IEEE, Piscataway, 2000. 709--712.
[13] Zheng X J, Zhu L L, Zhou Y H, et al. Appl. Phys. Lett., 2005, 87 (24): 242101. [14] Li L X, Liu H, Wang J Y, et al. Chem. Phys. Lett., 2001, 347: 373--377.
[15] Anno H, Hatada K, Shimizu H, et al. J. Appl. Phys., 1998, 83 (10): 5270--5276.
[16] Toprak M S, Stiewe C, Platzek D, et al. Adv. Funct. Mater., 2004 14 (12): 1189--1196.
[17] Liu H, Wang J, Hu X, et al. J. Alloys and compd., 2002 334: 313--316.
[18] 余柏林, 唐新峰, 祁琼, 等, 物理学报, 2004, 53 (9): 3130--3135.
[19] Mi J L, Zhao X B, Zhu T J, et al. J. Alloys Compd., 2006, 417: 269--272.
[20] Mi J L, Zhao X B, Zhu T J, et al. J. Alloys Compd., 2005, 399: 260--263.
[21] 刘恩科, 朱秉升, 罗晋生. 半导体物理学, 第4版, 北京: 国防工业出版社, 1997. 292.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%