欢迎登录材料期刊网

材料期刊网

高级检索

采用电子束悬浮区熔装置(EBFZM)制备了Si-TaSi2共晶自生复合场发射材料, 系统地研究了Si-TaSi2共晶的定向凝固组织特征. 当凝固速率在0.3~9.0mm/min范围内变化时, 均可获得Si-TaSi2共晶自生复合材料, 具有高精确取向的TaSi2纤维在硅连续基体中均匀分布. 随着凝固速率的增大, TaSi2纤维的直径和平均间距减小, 面密度和体积分数增大. 采用零功率法考察了不同凝固速率时的固-液界面形貌. 当凝固速率由0.3mm/min变化到5.0mm/min时, 固-液界面经历了平界面→浅胞状界面→胞状界面→平界面的演化过程.

The directionally solidified Si-TaSi2 eutectic in ~situ composite for field emission was prepared with the electron beam floating zone melting (EBFZM) technique. The microstructure characteristic of Si-TaSi2 eutectic was systematically investigated. The Si-TaSi2 eutectic in ~situ composite, which has high-aligned and uniformly-distributed TaSi2 fibers in the Si matrix, can be obtained when the solidification rate changes from 0.3mm/min to 9.0mm/min. With the increase of the solidification rate, the diameter and the inter-rod spacing of the TaSi2 fibers are decreased, while the density and the volume fraction of the fibers are increased. The solid/liquid interface is studied by the zero power method as well. When the solidification rate varies from 0.3mm/min to 5.0 mm/min, the solid/liquid interface morphology
has the following evolution processing: planar interface→shallow cell interface→cell interface→planar interface.

参考文献

[1]
[2] Spindt C A. J. Appl. Phys., 1968, 39: 3504--3505.
[2] Kang S Y, Lee J H, Song Y H, et al. J. Vac. Sci. Technol. B, 1998, 16 (2): 871--874.
[3] Jayatissa A H. J. Vac. Sci. Technol. B, 1999, 17: 237--240.
[4] 应根裕, 胡文波, 邱勇,等. 平板显示技术, 第一版. 北京: 人民邮电出版社, 2002. 426--428.
[5] 秦玉香, 胡明, 李海燕, 等(QIN Yu-Xiang, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 277--283.
[6] 张振华, 彭景翠, 陈小华(ZHANG Zhen-Hua, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (2): 257--267.
[7] 刘卫东. 半导体技术, 1994, 4 (2): 1--4.
[8] Ditchek B M, Hefter J, Middleton T R. J. Crystal Growth, 1990. 401--412.
[9] Ditchek B M, Levinson M. Appl. Phys. Lett., 1986, 49 (24): 1656--1658.
[10] Kirkpatrick D A. Printer and/or copier using a field emission array. US Patent, US5903804, 1999-05-11.
[11] Zhang J, Cui C J, Han M, et al. J. Crystal Growth, 2005, 276: 92--96.
[12] Zhang J, Liu Y H, Li J G, et al. J. Mater. Sci., 1999, 34: 2507--2511.
[13] Yacobi B G, Ditchek B M. Appl. Phys. Lett., 1987, 50: 1083--1085.
[14] Elliott R. Eutectic solidification processing of Crystalline and Glassy Alloys. London: Butterworths \&
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%