欢迎登录材料期刊网

材料期刊网

高级检索

采用反应射频磁控溅射在Si(100)基片上制备了不同微结构的铝掺杂氧化锆薄膜. 利用高分辨透射电子显微镜、X射线衍射仪和原子力显微镜研究了退火温度对铝掺杂氧化锆薄膜热学稳定性、界面稳定性和表面粗糙度的影响, 探讨了铝掺杂氧化锆薄膜的I-V特性与薄膜的微观状态之间的关系. 研究结果显示: 在铝掺杂氧化锆薄膜中掺入不同量的Al对薄膜的微结构有较大影响, 随着薄膜中Al/Zr原子含量比的增大, 薄膜微结构经历从a-ZrO2(未掺杂)到t-(Zr,Al)O2相和c-(Zr,Al)O2相(Al/Zr=1/4)再到a-(Zr,Al)O2(Al/Zr=4/5)的变化; 与纯ZrO2薄膜相比, Al掺杂氧化锆(Al/Zr=4/5)薄膜的结晶化温度明显提高, 薄膜热学稳定性得到改善.

Al-doped ZrO2 films with different microstructures were deposited on Si (100) substrates by using reactive RF magnetron sputtering process with metallic Zr and Al as targets in an argon-oxygen atmosphere. The films were characterized with high-resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), and atomic force microscope (AFM) to investigate variety of the thermal stability, the interfacial stability and the surface roughness of the films with different annealing temperatures. The influence of the microstructures of Al-doped ZrO2 thin films on their electrical I-V characteristics was also discussed. The results show that the atomic content of Al in films has a significant influence on the microstructures, upon increasing the atomic content ratio of Al/Zr, the structure transition of the films is a-ZrO2 (pure)→t-(Zr,Al)O2 and c-(Zr,Al)O2 (Al/Zr=1/4)→a-(Zr,Al)O2(Al/Zr=4/5). Al-doped ZrO2 thin films with Al/Zr atomic ratio of 4/5 has the increase in the crystallization temperature compared to a pure ZrO2 film, so the thermal stability of the films is improved.

参考文献

[1] Wallace R M. Appl. Surf. Sci., 2004, 231-232: 543--551.
[2] Wilk G D, Wallace R M, Anthony J M. J. Appl. Phys., 2001, 89 (10): 5243--5275.
[3] Garner C M, Kloster G, Atwood G, et al. Microelectronics Reliability, 2005, 45 (5-6): 919--924.
[4] Kim J S, MarZouk H A, Reucroft P J. Thin Solid Films, 1995, 254 (1-2): 33--38.
[5] Chen H W, Landheer D, Wu X, et al. J. Vac. Sci. Technol. A., 2002, 20 (3): 1145--1148.
[6] 阎志军, 王印月, 徐闰, 等. 物理学报, 2004, 53: 2771--2775.
[7] Gao P T, Meng L J, Teixeira V, et al. Vacuum, 2000, 56: 143--148.
[8] 卢红亮, 徐敏, 丁士进, 等(LU Hong-Liang, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 20 (5): 1217--1221.
[9] Wilk G D, Wallace R M. Appl. Phys. Lett., 2000, 76 (1): 112--114.
[10] Quevedo-Lopez M A, El-Bouanani M, Gnade B E, et al. J. Appl. Phys., 2002, 92 (7): 3540--3550.
[11] Wilk G D, Wallace R M. Appl. Phys. Lett., 1999, 74 (19): 2854--2856.
[12] Van Dover R B, Green M L, Manchanda L, et al. Appl. Phys. Lett., 2003, 83 (7): 1459--1461.
[13] Van Dover R B, Lang D V, Green M L, et al. J. Vac. Sci. Technol. A., 2001, 19 (6): 2775--2779.
[14] Kundu M, Miyata N, Ichikawa M. J. Appl. Phys., 2003, 93 (3): 1498--1504.
[15] Gao K Y, Seyller Th, Ley L, et al. Appl. Phys. Lett., 2003, 83 (9): 1830--1832.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%