欢迎登录材料期刊网

材料期刊网

高级检索

以工业用硅粉、碳粉和碳化钛粉为原料,利用放电等离子烧结技术原位反应制备了TiSi2-SiC两相复合材料和TiSi2-SiC-Ti3SiC2三相复合材料. 利用XRD、FESEM和TEM对复合材料的相组成和微观结构进行了研究. 结果表明, 基体相TiSi2的晶粒尺寸在1μm以上, 反应生成的SiC颗粒尺度 在200~300nm, 且均匀弥散分布在TiSi2基体中. TiSi2-SiC材料的硬度、断裂韧性和抗弯强度随着SiC含量的增加都有一定程度的提高. Ti3SiC2 三元相的引入大大提高了TiSi2-SiC-Ti3 SiC2复合材料的力学性能. SiC和Ti2SiC2的引入对TiSi2-SiC复合材料在高温下的电导率和热导率影响较小.

TiSi2-SiC and TiSi2-SiC-Ti3SiC2 composites were in situ fabricated by spark plasma sintering using commercially available Si, Ti, C and TiC as starting materials. The phase constitutes and microstructures of the composites were analyzed by XRD, FESEM and TEM. It shows that the TiSi2 grains are larger than 1μm and SiC particles in the range of 200--300nm uniformly distribute
in the TiSi2 matrix. The hardness, fracture toughness and bending strength of TiSi2-SiC composites increase with the SiC contents increasing. The introduction of Ti3SiC2 enhances the mechanical properties of
TiSi2-SiC-Ti3SiC2 composite greatly. In addition, the introduction
of SiC and Ti3SiC2 have little effect on the electrical conductivity and thermal conductivity of TiSi2 -SiC composites tested at the elevated temperature.

参考文献

[1] Meschter P J, Scgwartz D S. J. Met., 1989, 41 (11): 52--55.
[2] Bhattacharya A K. J. Am. Ceram. Soc., 1991, 74 (10): 2707--2711.
[3] Yang W Y, Iwakuro H, Yagi H, et al. Jpn. J. Appl. Phys., 1984, 23 (12): 1560--1567.
[4] Rosenkranz R, Frommeyer G. Mater. Sci. Eng., 1992, A 152 (1-2): 288--294. [5] Okana T, Yano T, Iseki T. Trans. Met. Soc. Jpn., 1993, 14A (4): 597--600.
[6] Racault C, Langlais F, Naslain R. J. Mater. Sci., 1994, 29 (15): 3384--3392.
[7] Wang L J, Jiang W, Chen L D, et al. J. Mater. Res., 2004, 19 (10): 3004--3008.
[8] Evans A G, Charles E A. J. Am. Ceram. Soc., 1976, 59 (7-8): 371--372.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%