欢迎登录材料期刊网

材料期刊网

高级检索

以Na2S、La和S或Se为原料在750℃下固相反应合成新型钠快离子导体NaLaS2和NaLaS 2. X射线衍射分析表明, NaLaS2 和NaLaS1.5Se0.5具有相同的晶体结构, 其空间群为FM3-M. 通过在0.1Hz~100kHz的频率范围交流阻抗谱的测试, 分析了这些快离子导体的离子导电性, 发现在相同的温度下NaLaS1.5Se0.5的电导率高于NaLaS2. NaLaS2在30和90℃时的电导率分别为3.65×10-5 和6.23×10-5S·cm-1, 而NaLaS1.5Se0.5在30和60℃时的电导率分别为8.11×10-5和1.37×10-4S·cm-1. 通过对合成物晶体结构的分析, 推测这两种化合物的导电率差异可能来自于Se2-离子较高的极化能力, 以及离子半径较大的Se2-引起的局部晶格扩大.

sodium fast ion conductors of NaLaS2 and NaLaS1.5Se0.5 were prepared by high temperature solid state reaction at 750℃. X-ray powder diffraction analysis confirms that NaLaS1.5Se0.5 is isostructural to NaLaS2 and NaLaSe2
(space group FM3-M). Their ionic conductive properties were investigated by AC impedance spectroscopy in the frequency range of 0.1Hz--100kHz at different temperatures. The conductivity of NaLaS1.5Se0.5 is higher than that of NaLaS2 at the same temperature. NaLaS 2 shows conductivity of 3.65×10-5S·cm-1 at 30℃ and 6.23×10-5S·cm-1 at 90℃, respectively; while NaLaS1.5Se0.5 displays higher conductivity of 8.11×10-5S·cm-1 at 30℃ and 1.37×10-4S·cm-1 at 60℃, respectively. This is probably due to the stronger polarization power of Se2--, the larger radius of Se2-, and subsequently the enlargement of local lattice.

参考文献

[1] 曾 飞, 蔡增良, 王文继. 功能材料, 2006, 37 (2): 222--224.
[2] 郭炳焜. 化学电源-电池原理及制造技术. 长沙: 中南工业大学出版社, 2000, 314--354.
[3] Plichta, Edward J, Behl W K. Method of making a flexi-ble solid electrolyte for use in solid state cells, USP: 5264308, 1993.
[4] Hartwig. Process for the production of thermodynamically stable ion conductor materials, US Patent: 4386020, 1983.
[5] 杨萍华, 张振军. 硅酸盐学报, 1994, 22 (4): 387--391.
[6] 郑子山, 张中太, 唐子龙, 等. 化学进展, 2003, 15 (2): 101--105.
[7] 吴宇平, 万春荣, 姜长印, 等. 锂离子二次电池. 北京: 化学工业出版社, 2002, 234--239.
[8] Masuda H, Fujino T, Sato N, et al. Mater. Res. Bull, 1999, 34 (8): 1291--1300.
[9] Sato M, Adachi G, Shiokawa J. Mater. Res. Bull, 1984, 19 (9): 1215--1220.
[10] Ohtani T, Honjo H, Wada H. Mater. Res. Bull, 1987, 22 (6): 829--840.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%