欢迎登录材料期刊网

材料期刊网

高级检索

采用直流反应磁控溅射法, 在平整光滑的普通玻璃基片表面沉积了厚度分别为80nm、440nm和1μm的氧化钒薄膜. 采用原子力显微镜(AFM)、扫描电镜(SEM)和X射线衍射仪(XRD)对薄膜的表面形貌、结构和结晶化的分析表明, 厚度影响着薄膜的颗粒大小和结晶状态, 随着薄膜厚度的增加, 薄膜的颗粒增大, 晶化增强; 薄膜具有明显的垂直于衬底表面的“柱”状择优生长特征. 对薄膜的方阻和方阻随温度的变化进行了相关分析, 证实了厚度对氧化钒薄膜的电学性能存在明显的影响, 随着薄膜厚度的增加, 薄膜的方阻减小, 方阻温度系数升高, 薄膜的方阻随温度变化的回线滞宽逐渐增大, 薄膜的金属-半导体相变逐渐趋于明显.

Vanadium oxide thin films with thickness of 80nm, 440nm and 1μm were deposited on normal glass substrate by reactive DC magnetron sputtering method. The surface morphology, structural feature and crystallization were studied by atomic force microscope (AFM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The results reveal that the grain size and the crystallization state of the thin films are affected by the thickness of thin films. The grain size increases and the crystallization is enhanced with the film thickness increasing. The growth of the thin film demonstrates an obvious “columnar” preferential growth perpendicular to the glass substrates. Analyses of the square resistance and its temperature dependence demonstrate that the thickness of the films plays an important role on the electric properties of vanadium oxide thin films. With the thin film thickness increasing, the square resistance decreases, the temperature coefficient of square resistance increases, width of the hysteresis loop turns to broad, and the metal-semiconductor phase transition becomes obviously.

参考文献

[1] Morin F J. Phys. Rev. Lett., 1959, 3 (1): 34--36.
[2] Adler D. Rev. Mod. Phys., 1968, 40 (4): 714--736.
[3] Zylbersztejn A, Mott N F. Phys. Rev. B, 1975, 11 (11): 4383--4395.
[4] Surnev S, Ramsey M G, Netzer F P. Progress in Surface Science, 2003, 73 (4-8): 117--165.
[5] Chiarello G, Barberi R, Amoddeo A, et al. Applied Surface Science, 1996, 99 (1): 15--19.
[6] Ottaviano L, Pennisi A, Simone F. et al. Optical Materials, 2004, 27 (2): 307--313.
[7] Chen Sihai, Ma Hong, Yi Xinjian, et al. Infrared Physics and Technology, 2004, 45 (4): 239--242.
[8] Yamamura T, Watanabe N, Shiokawa Y. Journal of Alloys and Compounds, 2006, 408-412: 1260--1266.
[9] Lampert C M. Solar Energy Materials and Solar Cells, 2003, 76 (4): 489--499.
[10] Wood R A. Proc. SPIE Int. Soc. Opt. Eng., 1993, 2020(Infrared Technology XIX): 322--329.
[11] Tissot J L. Infrared Physics and Technology, 2004, 46 (1-2): 147--153.
[12] Ramana C V, Hussain O M. Material Science and Engineering B, 1998, 52 (1): 32--39.
[13] 李金华, 袁宁一, 陈王丽华, 等.物理学报, 2002, 51 (8): 1788--1792.
[14] 吴召平, 方平安(WU Zhao-Ping, et al).无机材料学报(Journal of Inorganic Materials), 1999, 14 (5): 823-0827.
[15] 陈文, 麦立强, 徐庆, 等(CHEN Wen, et al).无机材料学报(Journal of Inorganic Materials), 2005, 20 (1): 65--70.
[16] 王恩哥.物理学进展, 2003, 23 (1): 1--61.
[17] Dutta J, Roubeau P, Emei-aud T J M, et al. J. Mater. Sci., 1995, 30 (1): 53--62.
[18] 杨烈宇, 关文铎, 顾卓明.材料表面薄膜技术, 第1版.北京: 人民交通出版社, 1991.207--228.
[19] Kulkarni A K, Schulz K H, Lim T S, et al. Thin Solid Films, 1999, 345 (2): 273--277.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%