采用浸渍法制备了经不同温度焙烧的CuO/γ-Al 2O3催化剂, 并通过BET、XRD、UV-DRS、H2-TPR以及CO完全氧化反应, 研究了不同焙烧温度对CuO/γ-Al2O3催化剂中CuO组分的分散、还原和催化性质的影响. 结果表明: 当焙烧温度为450℃时, CuO在γ-Al2O3上的分散容量约为0.56mmol/100m2; 当焙烧温度达到750℃时, Cu2+同时占据γ-Al2O3载体(110)面上的八面体和四面体空位. 对于450℃焙烧的低CuO含量的样品, 在H2-TPR结果中只观察到处于八面体空位的CuO物种的还原, 而经750℃焙烧的样品则同时观察到处于八面体和四面体空位的CuO物种的还原, 且处于八面体空位的CuO的还原会促进处于四面体空位的CuO的还原. 处于八面体空位的CuO在CO完全氧化反应中的活性要高于处于四面体空位的CuO.
CuO/γ-Al2O3 samples were prepared by impregnating γ-Al2O3 with an aqueous solution containing requisite amount of Cu(NO3)2. BET, XRD, UV-DRS, H2-TPR and CO oxidation were employed to characterize the dispersion, reduction behavior and catalytic properties of CuO/γ-Al2O3 catalyst calcinated at different temperatures. The results indicate that the dispersion capacity of CuO on the surface of γ-Al2O3 is about 0.56mmol/100m2 when it is calcinated at 450℃; while for the samples calcinated at 750℃, Cu2+ would occupy both the octahedral and tetrahedral vacant sites on the (110) plane of γ-Al2O3. For samples with low CuO loading amount, only the reduction peak of Cu2+ in octahedral coordination environment is observed in xxCu/Al-450 samples; while for xx Cu/Al-750 samples, the reduction peaks of Cu2+ in octahedral and tetrahedral coordination environment can be observed and the reduction of Cu2+ in octahedral coordination environment would promote the reduction of Cu2+ in tetrahedral coordination environment. The CO oxidation results indicate that the activity of dispersed CuO species in octahedral coordination environment is higher than that in tetrahedral coordination environment.
参考文献
[1] | Larsson P, Andersson A, Wallenberg L R, et al. J. Catal., 1996, 163 (2): 279--293. [2] Larsson P, Andersson A. J. Catal., 1998, 179 (1): 72--89. [3] Centi G, Nigro C, Perathoner S, et al. Catal. Today, 1993, 17 (1): 159--166. [4] Centi G, Perathoner S, Kartheuser B, et al. Catal. Today, 1993, 17 (1): 103--110. [5] Centi G, Perathoner S, Kartheuser B, et al. Appl. Catal. B: Environ., 1992, 1 (2): 129--137. [6] Park P W, Ledford J S. Appl. Catal. B: Environ., 1998, 15 (3-4): 221--231. [7] Turek A M, Wachs I E, DeCanio E. J. Phys. Chem., 1992, 96 (12): 5000--5007. [8] Schuit G A, Gates B C. AIChE J., 1973, 19 (3): 417--438. [9] Jimenez-Conzalez J, Schmeiber D. Surf. Sci., 1991, 250 (1-3): 59--70. [10] Xia W S, Wan H L, Chen Y. J. Mol. Catal. A: Chem., 1999, 138 (2-3): 185--195. [11] Zhu H Y, Shen M M, Wu Y, et al. J. Phys. Chem. B, 2005, 109 (23): 11720--11726. [12] Xie Y C, Tang Y Q. Adv. Catal., 1990, 37: 1--43. [13] Xu B, Dong L, Chen Y. J. Chem. Soc. Faraday Trans., 1998, 94 (13): 1905--1909. [14] Zhu H Y, Wu Y, Zhao X, et al. J. Mol. Catal. A: Chem., 2006, 243 (1): 24--30. [15] Chary K V R, Seela K K, Sagar G V, et al. J. Phys. Chem. B, 2004, 108 (2): 658--663. [16] Chary K V R, Sagar G V, Naresh D, et al. J. Phys. Chem. B, 2005, 109 (19): 9437--9444. [17] Velu S, Suzuki K, Okazaki M, et al. J. Catal., 2000, 194 (2): 373--384. [18] Friedman R M, Freeman J J. J. Catal., 1978, 55 (1): 10--28. [19] Praliau H, Mikhailenko S, Chajar Z, et al. Appl. Catal. B: Environ., 1998, 16 (4): 359--374. [20] Chen L Y, Horiuchi T, Osaki T, et al. Appl. Catal. B: Environ., 1999, 23 (4): 259--269. [21] 董林, 金永漱, 陈懿. 中国科学(B辑), 1996, 26 (6): 561--566. [22] Hurst N W, Gentry S, Jones, A. Catal. Rev. Sci. Eng., 1982, 24 (2): 233--309. [23] Luo M F, Fang P, He M, et al. J. Mol. Catal. A: Chem, 2005, 239 (1-2): 243--248. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%