欢迎登录材料期刊网

材料期刊网

高级检索

采用化学气相渗透法(CVI)制备了二维炭纤维增强碳化硅(C/SiC)全陶瓷基复合材料铰链试样. 高温燃气风洞实现了铰链试样在1800℃高温氧化气氛中传动与摩擦行为的试验模拟. 基于耦合应力等效模拟系统的开发, 采用摩擦力矩的变化表征材料的传动与摩擦行为. 对比分析了材料在室温与高温下以传动为背景的高载荷、低转速摩擦磨损行为及机理. C/SiC复合材料铰链试样在高温燃气环境中稳定的摩擦力矩和对滑动时间的不敏感, 验证了材料在高温下更稳定、更可靠的高温摩擦性能及热承载能力. 高温下表面生成的氧化反应膜通过应力的重新分布起到有效的保护与润滑作用.

An all-ceramic hinge based on the two dimensional carbon fiber reinforced silicon carbide matrix (C/SiC) composites was prepared by chemical vapor infiltration. The high temperature combustion wind tunnel realized simulation of the transmitting and friction behavior of the hinge at 1800℃ in an oxidizing atmosphere. Based on the coupling stress equivalent simulation system, a characterization method with the change of torque was proposed to evaluate the friction behavior. The friction and wear behavior as well as wear mechanism were studied both at high temperatures in combustion environment and at room temperature in air. The results indicate that the friction torque is stable and insensitive to the sliding time at high
temperatures, which demonstrates stable and reliable friction property and thermal load-carrying ability of the hinge. The
tribochemical reaction products on contact surface may moderate the stress distribution by providing a reaction layer for wear protection and lubrication.

参考文献

[1]
[2]
[3]
[4] Ortelt M, Weihs H, Fischer I, et al. Ceram. Eng. Sci. Pro., ABI/INFORM Trade &
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%