采用固相法制备了Mn改性的CaBi4Ti4O15(CBT+x mol% MnCO3)层状压电陶瓷. 介电温谱显示所有样品居里点在780℃附近, 并且发现该材料在110K处有一介电弛豫峰. Mn的加入显著降低了高温下的介电损耗, 剩余极化轻微降低, 室温介电常数从173减小到162, 同时机械品质因子由2700增加到4400, 显示了硬性掺杂的效果. 在100~600℃范围内, x=1.0的样品比纯组分的电阻率提高了一个数量级以上, 500℃的电阻率提高了约2个数量级(108Ω·cm), 电阻率对温度的Arrhenius拟合由两段过渡到三段, 压电系数d33由7提高到14.5. 实验结果表明, Mn改性的CBT在高温传感器等领域具有应用前景.
Mn-modified CaBi4Ti4O15 (CBT+x mol% MnCO3) layer-structured piezoelectric ceramics were prepared by the solid state reaction technology. All samples have the same Curie temperature of 780℃, but the dielectric loss at high temperature is remarkably lowered by Mn addition. With increasing content of Mn, the remnant polarization is slightly decreased; the dielectric constant at room temperature decreases from 173 to 162; and the mechanical quality factor increases from 2700 to 4400. The piezoelectric constant d33 is enhanced from 7 to 14.5. The resistivity of 1.0mol% Mn modified sample is found to be 108 Ω·cm at 500℃, 50 times higher than that of pure CBT. The Arrehenius plot of Mn-modified CBT is fitted by 3 straight lines, while that of pure CBT is fitted by 2 straight lines. The results suggest that the Mn modified CBT is a potential material for high temperature sensing application.
参考文献
[1] | Meetham G W. 0J. Mat. Sci., 1991, 26 (4): 853--860. [2] Megriche A, Lebrun L, Troccaz M. Sens. Actuator A-Phys., 1999, 78 (2--3): 88--91. [3] Hase T, Noguchi T, Takemura K, et al. Jpn. J. Appl. Phys. Part 1, 1998, 37 (9B): 5198--5202. [4] Yan H X, Li C G, Zhou J G, et al. Jpn. J. Appl. Phys. Part 1, 2000, 39 (11): 6339--6342. [5] 曾江涛. 铋层状结构压电陶瓷的掺杂改性及晶粒定向研究. 中国科学院研究生院博士学位论文, 2005. [6] Ogawa H, Kimura M, Ando A, et al. Jpn. J. Appl. Phys. Part 1, 2001, 40 (9B): 5715--5718. [7] Takeuchi T, Tani T, Saito Y. Jpn. J. Appl. Phys. Part 1, 1999, 38 (9B): 5553--5556. [8] Hou Y D, Zhu M K, Gao F, et al. J. Am. Ceram. Soc., 2004, 87 (5): 847--850. [9] Izaki T, Haneda H, Watanabe A, et al. Jpn. J. Appl. Phys. Part 1, 1992, 31 (9B): 3045--3047. [10] Nagata H, Takenaka T. J. Euro. Ceram. Soc., 2001, 21 (10--11): 1299--1302. [11] Park J H, Park J, Park J G, et al. J. Euro. Ceram. Soc., 2001, 21 (10--11): 1383--1386. [12] Park J H, Park J G, Kim B K, et al. Mater. Res. Bull., 2002, 37 (2): 305--311. [13] Zhang S J, Eitel R E, Randall C A, et al. Appl. Phys. Lett., 2005, 86 (26): 62904--62904. [14] Barranco A P, Pinar F C, Martinez P, et al. J. Euro. Ceram. Soc., 2001, 21 (4): 523--529. [15] Szwagierczak D, Kulawik J. J. Euro. Ceram. Soc., 2005, 25 (9): 1657--1662. [16] 张丽娜, 李国荣, 赵苏串, 等(Zhang Li-Na, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (6): 1389--1395. [17] Xu Y, Li Z R, Wang H, et al. Phys. Rev. B, 1989, 40 (17): 11902--11908. [18] Ko J H, Kojima S, Lushnikov S G, et al. J. Appl. Phys., 2002, 92 (3): 1536--1543. [19] Noguchi Y, Miyayama M. Appl. Phys. Lett., 2001, 78 (13): 1903--1905. [20] Friessnegg T, Aggarwal S, Ramesh R, et al. Appl. Phys. Lett., 2000, 77 (1): 127--129. [21] Yu C S, Hsieh H L. J. Euro. Ceram. Soc., 2005, 25 (12): 2425--2427. [22] Kholkin A L, Brooks K G, Setter N. Appl. Phys. Lett., 1997, 71 (14): 2044--2046. [23] Ehara S, Muramatsu K, Shimazu M, et al. Jpn. J. Appl. Phys. Part 1, 1981, 20 (5): 877--881. [24] Norton D P. Mater. Sci. Eng. R-Rep., 2004, 43 (5--6): 139--247. [25] Chan N H, Sharma R K, Smyth D M. J. Am. Ceram. Soc., 1982, 65 (3): 167--170. [26] Wang Z Y, Chen T G. Phys. Stat. Sol. A, 1998, 167 (1): R3--R4. [27] Forbess M J, Seraji S, Wu Y, et al. Appl. Phys. Lett., 2000, 76 (20): 2934--2936. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%