欢迎登录材料期刊网

材料期刊网

高级检索

采用sol-gel工艺制备了Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si异质结. 研究了退火温度对异质结微观结构与生长行为、漏电流密度和C-V特性等的影响. 研究表明: 成膜温度较低时,SrBi2Ta2O9、Bi4Ti3O12均为多晶薄膜, 但随退火温度升高, Bi4Ti3O12薄膜沿c轴择优生长的趋势增强; 经不同退火温度处理的Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si异质结的C-V曲线均呈现顺时针非对称回滞特性, 且回滞窗口随退火温度升高而增大, 经700℃退火处理后异质结的最大回滞窗口达0.78V; 在550~700℃范围内, Pt/SrBi2Ta2O9/Bi4Ti3O12/\\p-Si异质结的漏电流密度先是随退火温度升高缓慢下降, 当退火温度超过650℃后漏电流密度明显增大, 经650℃退火处理的异质结的漏电流密度可达2.54×10-7A/cm2的最低值.

Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si heterostructures were fabricated by sol-gel method. The effects of annealing temperature on microstructure, crystal growth behavior, leakage current density, and C-V characteristics of Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si heterostructure were investigated. The SrBi2Ta2O9/Bi4Ti3O12 multilayer thin films annealed at low temperature are polycrystalline, and grow in the preferred c-axis orientation with the increase of annealing temperature. The C-V curves of Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si heterostructure annealed at various temperatures all show a clockwise ferroelectric hysteresis loop. The widths of C-V hysteresis loops of Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si heterostructure increase with the increase of annealing temperature and reach a maximum of 0.78V when the heterostructure is annealed at 700℃. The leakage current density of Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si heterostructure decrease slowly with the increase of annealing temperature from 550℃ to 650℃. However, when the annealing temperature is above 650℃, the leakage current density of Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si heterostructure increase evidently. The lowest leakage current density is 2.54×10-7A/cm2 when Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si heterostructure is annealed at 650℃.

参考文献

[1] Scott J F. Mater. Sci. Eng. B, 2005, 120 (1-3): 6-12.
[2] Hirooka G, Noda M, Okuyama M. Jpn. J. Appl. Phys., 2004, 43 (4B): 2190-2193.
[3] Park B H, Kang B S, Bu S D, et al. Nature, 1999, 401: 682-684.
[4] Wang H, Yu J, Dong X M, et al. Jpn. J. Appl. Phys., 2001, 40 (3A): 1388-1390.
[5] Araujo C A, Cuchiaro J D, Mcmillan L D, et al. Nature, 1995, 374: 627-629.
[6] Ryu S O, Joshi P C, Desu S B. Appl. Phys. Lett., 1999, 75 (14): 2126-2128.
[7] Aizawa K, Ishiwara H. Jpn. J. Appl. Phys., 2000, 39 (11B): L1191-L1193.
[8] Kohno A, Sakamoto H, Matuo K. Jpn. J. Appl. Phys., 2005, 44 (4A): 1928-1931.
[9] Black C T, Curtis F, Thomas J L. Appl. Phys. Lett., 1997, 71 (14): 2041-2043.
[10] 王 华. 物理学报, 2004, 53 (4): 1265-1270.
[11] Chiou T Y, Kuo D H. Appl. Phys. Lett., 2004, 85 (15): 3196-3198.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%