欢迎登录材料期刊网

材料期刊网

高级检索

以不同温度炭化的石油焦为原料、KOH为活化剂制备电化学电容器用炭电极材料. 采用XRD、TEM和N2吸附法对前驱体及活化产物的结构进行了表征, 并考察了样品的电化学性能. 结果表明: 通过调整前驱体的预炭化温度, 可实现对石油焦基活性炭的微晶结构和孔结构的调控, 分别制得无晶体特性的高比表面积活性炭和由大量类石墨微晶构成的低比表面积活性炭. 低表面积活性炭依靠充电过程中电解质离子嵌入类石墨微晶层间而实现能量存储, 具有比高比面积活性炭高10倍的面积比电容和更大的体积比电容.

The carbon electrode materials for electrochemical capacitors were prepared from petroleum coke precursor carbonized at different temperatures followed by KOH activation. The precursors and activated products were characterized by XRD, TEM and N2 adsorption techniques. The capacitive behavior of activated petroleum coke was also examined. Results show that crystallite structure and pore structure of activated petroleum cokes can be controlled by adjusting the precarbonization temperature, and so non-crystalline high surface area activated carbons and crystalline low surface area novel activated carbons which consist of large amount of graphite-like crystallite are obtained. The energy storage for the low surface area activated carbon depends on the intercalation of electrolyte ions into graphite-like crystallite layers during the charge process. The surface specific capacitance of the low surface area activated carbon is over ten times of that for high surface activated carbon, and the low surface area activated carbon has a higher volumetric specific capacitance.

参考文献

[1] Kotz R, Carlen M. Electrochimica Acta, 2000, 45 (15--16): 2483--2498.
[2] 文越华, 曹高萍, 程杰, 等(WEN Yue-Hua, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 441--447.
[3] Endo M, Kim Y J, Ohta H, et al. Carbon, 2002, 40 (14): 2613--2626.
[4] 孟庆函, 刘玲, 宋怀河, 等(MEGN Qing-Han, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (3): 594--598.
[5] Xing W, Qiao S Z, Ding R G, et al. Carbon, 2006, 44 (2): 216--224.
[6] Zhou H S, Zhu S M, Mitsuhiro H, et al. Journal of Power Sources, 2003, 122 (2): 219--223.
[7] 侯朝辉, 李新海, 刘恩辉, 等. 新型炭材料. 2004, 19 (1): 11--15.
[8] Vix-Guterl C, Saadallah S, Jurewicz K, et al. Materials Science and Engineering B, 2004, 108 (1--2): 148--155.
[9] Mitani S, Lee S I, Yoon S H, et al. Journal of Power Sources, 2004, 133 (2): 298--301.
[10] Lee S I, Mitani S, Yoon S H, et al. Carbon, 2004, 42 (11): 2332--2334.
[11] Mitani S, Lee S I, Saito K, et al. High Capacitance Coke Activated under Electric Field. Carbon 2005 International conference on Carbon, Gyeongju Korea, 2005: P02--22.
[12] 朱春野, 曹高萍. 新型炭材料, 2005, 20 (4): 380--381.
[13] 李同起. 天津: 天津大学博士学位论文, 2005.
[14] 立本英械, 安部郁夫. 活性炭的应用技术--其维持管理及存在问题. 南京: 东南大学出版社, 2002. 476--477..
[15] Yoshizawa N, Maruyama K, Yamada Y, et al. Fuel, 2002, 79 (13): 1461--1466.
[16] 时志强, 王成扬, 杜缳,等. 天津大学学报(自然科学版), 2007, 40 (8): 911--915.
[17] Lozano-Castell\acuteo D, Cazorla-Amor\acuteos D, Linares-Solano A, et al. Carbon, 2003, 41 (9): 1765--1775.
[18] Chmiola J, Yushin G, Gogotsi Y, et al. Science, 2006, 313: 1760--1763.
[19] Takeuchi M, Koike K, Maruyama T, et al. Electrochemistry, 1998, 66 (12): 1311--1317.
[20] 时志强. 天津: 天津大学博士学位论文, 2007.\
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%