欢迎登录材料期刊网

材料期刊网

高级检索

采用sol-gel法在Pt/Ti/SiO2/Si衬底上制备出高度(100)择优取向的Gd掺杂PZT薄膜(简写为PGZT); 介电测试结果表明, 1mol%Gd掺杂的PZT薄膜介电常数最大, 2mol%Gd掺杂PZT薄膜与未掺杂薄膜的介电常数相差不大, Gd掺入量>2mol%时, 薄膜的介电常数下降; 薄膜的不可逆极化值呈现与介电常数相同的变化趋势, 而可逆极化值变化较小. 在弱电场下(低于矫顽场Ec), 用瑞利定律分析薄膜介电常数随电场强度的变化规律, 1mol%Gd掺杂的薄膜瑞利系数α最大, 说明薄膜中缺陷的浓度最低. 1mol%Gd掺杂的薄膜介电和铁电性能的改善与Gd3+在PZT晶格中的占位情况有关.

Highly (100)-oriented Pb(Zr0.52Ti0.48)O3 thin films with different Gd dopants (PGZTx, x=0, 1mol%, 2mol%, 3mol%, 5mol% Gd) were prepared on Pt/Ti/SiO2/Si substrates by the sol-gel technique and rapid thermal annealing (RTA) process. The dielectric properties of the PZT thin films with 1mol% Gd dopant is improved with increased dielectric permittivity and decreased dielectric dissipation. However, when Gd dopants are more than 2mol%, dielectric properties of the doped PZT thin films are deteriorated obviously including decrease of dielectric permittivity, increase of dielectric dissipation. At the saturation field, the irreversible polarization first increases when Gd content is 1mol% and then decreases when Gd contents are more than 2mol%, the reversible polarization remains almost constant in all PGZT thin films. The so-called Rayleigh law used to describe the hysteresis of ferromagnetic materials in the subcoercive regime can be extended to describe the subcoercive hysteresis in ferroelectric PGZT materials. The mechanism of the Gd dopant effect on the dielectric properties and polarization behavior is also discussed.

参考文献

[1] Scott J F, Araujo C A. Science, 1989, 46 (4936): 1400--1405.
[2] Setter N, Damjanovic D, Eng L, et al. J. Appl. Phys., 2006, 100 (5): 051606--1--46.
[3] Wang Y K, Tseng T Y. Appl. Phys. Lett., 2002, 80 (20): 3790--3792.
[4] Kim C J, Kim B I. J. Korea. Phys. Soc., 2005, 46 (2): 513--516.
[5] 于艳菊, 王福平, 姜兆华, 等(YU Yan-Ju, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17 (1): 235--242.
[6] Nakaki H, Uchida H, Koda S, et al. Appl. Phys. Lett., 2005, 879180: 182906--1--3.
[7] Scott J F, Araujo C A, Melnick B M, et al. J. Appl. Phys., 1991, 70 (1): 382--388.
[8] Roy B, Majumder S B, Katiyar R S. Integr. Ferroelctr., 2002, 42 (1): 373--384.
[9] Garg A, Goel T C. J. Mater. Sci., Materials in Electronics, 2000, 11 (3): 225--228.
[10] 黄文、曾慧中、张鹰, 等. 物理学报, 2005, 54 (3): 1334--1340.
[11] Tan Q, Xu Z, Viehland D. J. Mater. Res., 1999, 14 (2): 465--475.
[12] Bolten D, B\ddotottger U, Schneller T, et al. Appl. Phys. Lett., 2000, 77 (23): 3830--3832.
[13] Damjanovic D. Rep. Prog. Phys., 1998, 61 (9): 1267--1324.
[14] Barlingay C K, Dey S K. Thin Solid Films, 1996, 272 (1): 112--115.
[15] Jiles D. Introduction to Magnetism and Magnetic Materials, London: Chapman and Hall, 1991. 85--175.
[16] Taylor D V, Damjanovic D. J. Appl. Phys., 1997, 82 (4): 1973--1975.
[17] Taylor D V, Damjanovic D. Appl. Phys. Lett., 1998, 73 (14): 2045--2047.
[18] Boser D. J. Appl. Phys., 1987, 62 (4): 1344--1348.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%