欢迎登录材料期刊网

材料期刊网

高级检索

采用脉冲激光沉积法, 在(100)SrTiO3基底上, 制备了(La0.2Bi0.8FeO3)0.8-(NiFe2O4) 0.2(LBFO-NFO)多铁薄膜, 通过X射线衍射仪和场发射扫描电子显微镜确定了LBFO-NFO多铁薄膜的显微结构, 通过标准铁电测试系统(RT-66A)和振动样品磁强计(VSM)分别测试了LBFO-NFO多铁薄膜的铁电性能和铁磁性能. 研究发现: 多铁薄膜中LBFO和NFO二相均沿(100)方向外延生长, 晶粒尺寸在100~150nm之间; 薄膜具有明显的电滞回线(Ps=7.6μC/cm2)和磁滞回线(Ms=4.12×104A/m), 显示出明显的铁电铁磁共存特性. 通过对薄膜生长条件的控制, 可削除杂质相, 减小LBFO-NFO薄膜的漏电流, 提高铁电及铁磁性能.

(La0.2Bi0.8FeO3)0.8-(NiFe2O4)0.2 (LBFO-NFO) thin films were grown on (100) SrTiO3 substrates by pulse laser deposition . X-ray diffraction and Field Emission Scanning Electronic Microgrape studies confirm that the phases of LBFO and NFO in the films grow along the direction of (100) and the particle sizes of the two phases are about 100--150nm, respectively. The ferroelectric and ferromagnetic hysteresis of the films measured with a standardized ferroelectric test system (RT- 66A, Radiant technologies) and vibrating sample magnetometer (VSM) show that the saturation polarization and magnetization are 7.6μC/cm2 and 4.12×104A/m respectively, which indicates that LBFO-NFO films possess multiferroic properties obviously. By controlling the growth condition of the films, the leakage current of LBFO-NFO films can be decreased. Accordingly, the ferroelectric and ferromagnetic properties can be enhanced greatly.

参考文献

[1] Zheng H, Wang J, Lofland S E, et al. Science, 2004, 303 (5658): 661--663.
[2] Wang J, Neaton J B, Zheng H, et al. Science, 2003, 299 (5613): 1719--1722.
[3] Spaldin N A, Fiebig M. Science, 2005, 309 (5733): 391--392.
[4] Zhao T, Scholl A, Zavaliche F, et al. Nat. Mater., 2006, 5 (10): 823--829.
[5] Eerenstein W, Mathur N D, Scott J F. Nature, 2006, 442 (7104): 759--765.
[6] Hur N, Park S, Sharma P A, et al. Nature, 2004, 429 (6990): 392--395.
[7] Kimura T, Kawamoto S, Yamada I, et al. Phys. Rev. B, 2003, 67 (18): 180401--1--4.
[8] Nan C W, Cai N, Liu L, et al. J. Appl. Phys., 2003, 94 (9): 5930--5936.
[9] 周剑平, 施展, 刘刚, 等(ZHOU Jian-Ping, et al). 物理学报(Acta. Phys. Sin.), 2006, 55 (7): 3266--3269.
[10] Zavaliche F, Zhao T, Zheng H, et al. Nano Lett., 2007, 7 (6): 1586--1590.
[11] Liu M, Li X, Imrane H, et al. Appl. Phys. Lett., 2007, 90 (15): 152501--1--3. [12] Wang Y, Jiang Q H, He H C, et al. Appl. Phys. Lett., 2006, 88 (14): 142503--1--3.
[13] Singh S K, Kim Y K, Funakubo H, et al. Appl. Phys. Lett., 2006, 88 (16): 162904--1--3.
[14] Zavaliche F, Shafer P, Ramesh R. Appl. Phys. Lett., 2005, 87 (25): 252902--1--3.
[15] Das S R, Choudhary R N P, Bhattacharya P, et al. J. Appl. Phys., 2007, 101 (3): 034104--1--7.
[16] Chung F H. J. Appl. Cryst., 1974, 7 (6): 519--525.
[17] Béa H, Bibes M, Barthélémy A, et al. Appl. Phys. Lett., 2005, 87 (7): 072508--1--3.
[18] Zavaliche F, Das R R, Kim D M, et al. Appl. Phys. Lett., 2005, 87 (18): 182912--1--3.
[19] Lee Y H, Wu J M, Lai C H. Appl. Phys. Lett., 2006, 88 (4): 042903--1--3.
[20] Palkar V R, John J, Pinto R. Appl. Phys. Lett., 2002, 80 (9): 1628--1630.
[21] Ruette B, Zvyagin S, Pyatakov A P, et al. Phys. Rev. B, 2004, 69 (6): 064114--1--7.
[22] Luders U, Bibes M, Bobo J F, et al. Phys. Rev. B, 2005, 71 (13): 134419--1--7.
[23] Li X C, Rong Z G, Feng Z K, et al. J. Am. Ceram. Soc., 2006, 89 (4): 1450--1452.
[24] Naganuma H, Okamura S. J. Appl. Phys., 2007, 101 (9): 09M103--1--3.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%