欢迎登录材料期刊网

材料期刊网

高级检索

单纯的炭气凝胶(CA)与SiO球磨后可以制得性能优异的复合材料CA-SiO, 实验研究了球磨时间和球磨转速等工艺条件对CA-SiO的结构和电化学性能的影响. 结果表明, 无定形态的SiO与CA球磨后, 逐渐有晶粒细小的Si晶体析出, Si的晶粒随球磨时间的延长或球磨转速的提高先减小然后增大, Si的结晶度随球磨时间的延长或球磨转速的提高而增强, 但过长的球磨时间或过快的球磨转速均会导致材料中的晶体Si向非晶态转变; 球磨使材料中C的晶粒有所增大, 但球磨时间和球磨转速对C的晶粒大小没有明显的影响; CA-SiO中Si的结晶度越高、晶粒越小, 材料的嵌脱锂容量越高、充放电循环稳定性越好, 非晶态Si的存在不仅不利于锂离子在CA-SiO中的嵌入和脱出, 而且会导致材料的循环稳定性变差. 将CA-SiO用作锂离子电池负极材料时, 其最佳的制备工艺为: 以400r/min的速度球磨10h.

Carbon aerogel (CA)-SiO with excellent lithium insertion-extraction property could be prepared through ball-milling of carbon aerogel (CA) with SiO. Effects of ball-milling process including ball-milling time and ball-milling speed on structure and electrochemical property of CA-SiO composite were investigated. The results show that ball-milling of amorphous SiO with CA can crystallize Si with small particle size, the crystal size of Si increases with the extension of ball-milling time and the increase of ball-milling speed, and then decreases. The crystallization of Si can be improved by the extension of ball-milling time and the increase of ball-milling speed. However, ball-milling for too long time or at too high speed will result in transformation of crystal Si to amorphous. Little influence of ball-milling time and ball-milling speed is found on crystal size of C in the prepared CA-SiO, though ball-milling leads to some increase of C crystal size. CA-SiO has higher capacity and better cycling stability when the silicon within this material shows higher crystallization and smaller crystal size. In contrast, amorphous Si is disadvantageous for lithium insertion-extraction in CA-SiO which will lead to poorer cycling stability. The ball-milling speed of 400r/min and the ball-milling time of 10h are the best preparation parameters for CA-SiO used as anode material of lithium-ion battery.

参考文献

[1] Pekala R W. Low density resorcinol-formaldehyde aerogels. US Patent, 4873218, 1989.
[2] Pekala R W. J. Mater. Sci., 1989, 24 (9): 3221--3227.
[3] Pekala R W, Farmer J C, Alviso C T, et al. J. Non-Cryst. Solids, 1998, 225 (1): 74--80.
[4] Yuan X, Chao Y J, Ma Z F, et al. Electrochem. Commun., 2007, 9 (10): 2591--2595.
[5] Lee K T, Lytle J C, Ergang N S, et al. Adv. Funct. Mater., 2005, 15 (4): 547--556.
[6] Jung Y S, Lee K T, Ryu J H, et al. J. Electrochem. Soc., 2005, 152 (7): A1452--A1457.
[7] Wang G X, Yang L, Bewlay S L, et al. J. Power Sources, 2005, 146 (1-2): 521--524.
[8] Chao Y J, Yuan X, Ma Z F. Electrochimica Acta., 2008, 53 (9): 3468--3473.
[9] 解德滨, 沈军, 秦仁喜, 等. 材料导报, 2005, 19 (5): 271--273.
[10] 夏三宇, 陈晓红, 宋怀河. 北京化工大学学报, 2006, 33 (2): 46--49.
[11] Hasegawa T, Mukai S R, Shirato Y, et al. Carbon, 2004, 42: 2573--2579.
[12] Wang G X, Ahn J H, Yao Jane, et al. Electrochem. Commun., 2004, 6 (7): 689--692.
[13] Kima J H, Sohna H J, Kimb H, et al. J. Power Sources, 2007, 170 (2): 456--459.
[14] Moritaz T, Takami N. J. Electrochem. Soc., 2006, 153 (2): A425--A430.
[15] Zhang T, Gao J, Zhang H P, et al. Electrochem. Commun., 2007, 9: 886--889.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%