以柠檬酸和金属盐为原料, 采用有机凝胶-热分解法制备了MeFe2O4(Me=Zn, Ni0.5Zn0.5, Ni0.4Zn0.4Cu0.2)铁氧体纤维.通过FT-IR、XRD、TG-DSC、SEM和VSM等测试技术对纤维前驱体凝胶的结构、热分解过程及热处理产物的物相、形貌以及纤维的磁性能等进行了表征.结果表明, 在凝胶形成过程中, 金属离子单齿或双齿螯合配位于柠檬酸根阴离子, 形成线型分子结构, 使凝胶有较好的可纺性. 所制得的纤维具有较大的长径比, 纤维直径在0.5~20.0μm之间.这些纤维在室温下都具有软磁特性, 化学组成、晶粒大小及形貌对纤维的磁性能有着显著影响.ZnFe2O4、Ni0.5Zn0.5Fe2O4和Ni0.4Zn0.4Cu0.2Fe2O4纤维的饱和磁化强度分别为2.6、12.7和40.0A·m2·kg-1, 相应的矫顽力分别为4.77、5.82和4.04kA·m-1.
The spinel-type MeFe2O4(Me=Zn,Ni0.5Zn0.5, Ni0.4Zn0.4Cu0.2) ferrite fibres with diameters of 0.5-20.0μm and high aspect ratio (length/diameter) were successfully prepared by the organic gel-thermal decomposition process using metal salts and citric acid as raw materials. The structure, thermal decomposition process and morphologies of the gel precursors and the fibres derived from thermal decomposition of these precursors were characterized by FT-IR, XRD, TG-DSC and SEM, and the electromagnetic performance of ferrite fibers were measured by VSM. The results show that linear-type structural molecules for the gel precursor is formed by a single dentate liganding type or bidentate-chelating mode among citric acid and metal ions during the complexation reaction, and the gel composed of these linear-type molecules exhibits a good spinning performance. The MeFe2O4(Me=Zn, Ni0.5Zn0.5, Ni0.4Zn0.4Cu0.2) ferrite fibres all exhibit a soft magnetic performance, and chemical composition, grain size and morphology have considerable influence on the magnetic properties of these ferrite fibres. The saturation magnetization(M s) of ZnFe2O4, Ni0.5Zn0.5Fe2O4 and Ni0.4Zn0.4Cu0.2Fe2O4 fibres are 2.6, 12.7 and 40.0A·m2·kg-1, and coercivity of these fibres correspondingly are 4.77, 5.82 and 4.04kA·m-1, respectively.
参考文献
[1] | 邢丽英. 隐身材料. 北京: 化学工业出版社, 2004. [2] 刘 辉, 魏雨. 功能材料, 2000, 31 (2): 124-126. [3] 钟海胜, 李 强, 张一玲,等(ZHONG Hai-Sheng, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (6): 1477-1481. [4] 刘 银, 丘 泰(LIU Yin, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (3): 391-391. [5] Allwood D A, Xiong G, Cooke M D, et al. Science, 2002, 296 (5575): 2003-2006. [6] Martín J I, Nogués J, Liu K, et al. J. Magn. Magn. Mater., 2003, 256 (1-3): 449-501. [7] Fert A, Piraux L. J. Magn. Magn. Mater., 1999, 200 (1-3): 338-358. [8] Pullar R C, Taylor S M D, Bhattacharya A K. J. Euro. Ceram. Soc., 2002, 22 (12): 2039-2045. [9] Pullar R C, Appleton S A, bhattacharya A K. J. Mater. Sci., 2001, 36 (19): 4805-4812. [10] Pullar R C. J. Magn. Magn. Mater., 2006, 300 (2): 490-499. [11] Li D, Herricks T, Xia Y N. App. Phys. Lett., 2003, 83 (22): 4586-4588. [12] Zhan S H,Gong C R,Chen D R, et al. J. Disper. Sci. Tech., 2006, 27 (7): 931-933. [13] 翟学良, 胡亚伟, 刘伟华. 无机盐工业, 2006, 38 (5): 7-10. [14] 张春野, 沈湘黔, 景茂祥, 等. 稀有金属材料与工程, 2006, 35 (9): 1470-1474. [15] Zhang C Y, Shen X Q, Zhou J X, et al. J. Sol-Gol Sci. Techn., 2007, 42 (1): 95-100. [16] 沈德言. 红外光谱法在高分子研究中的应用. 北京: 科学出版社, 1982. [17] Nakamoto K. 无机和配位化合物的红外和拉曼光谱.黄德如, 汪仁庆译. 北京: 化学出版社, 1986. [18] Strathmann T J, Myneni Satish C B. Geochim. Cosmochim. Acta, 2004, 68 (17): 3441-3458. [19] Joy P A, Anantharaman M R. J. Magn. Magn. Mater., 2004, 269 (2): 217-226. [20] 陆 胜, 刘仲娥. 硅酸盐学报, 2005, 33 (6): 665-668. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%