欢迎登录材料期刊网

材料期刊网

高级检索

采用水热法制备出φ20~30nm, 长度达微米级的TiO2纳米纤维, 以XRD、TEM、IR等手段对不同工艺条件下获得的产物晶型结构、微观形貌以及化学组成进行了表征, 对TiO2纳米纤维成形机理进行探讨, 并就洗涤过程中pH值对纤维结构的影响进行分析. 结果表明, TiO2纳米纤维的形成机理可能是锐钛矿型TiO2纳米颗粒在强碱作用下生成K2Ti6O13颗粒, 小颗粒沿一定晶轴生长, 遵循溶解-生长机理, 逐渐长成纳米纤维. 清洗溶液的pH值对产物的成分和结构有较大影响, 通过控制清洗溶液的pH值和热处理温度, 可以获得组成分别为K2Ti6O13、H2Ti3O7和TiO2的纳米纤维. 在pH=7、80℃烘干条件下得到的主要是H2Ti3O7纳米纤维, 400℃煅烧后转变为TiO2纳米纤维.

The TiO2 nanofibres with the diameter of φ20-30nm and the length of micron-dimension were successfully synthesized by hydrothermal method. Their crystalline structure, morphology and chemical composition were characterized by the transmission electron microscope (TEM), X-ray diffraction patterns (XRD), infrared spectrum (IR), etc. The forming mechanism of the TiO2
nanofibres and the effects of pH value in the process of washing on the nanofibres structure were investigated and analyzed, respectively. The results indicate that the forming mechanism of the TiO2 nanofibres can be described as following: K2Ti6O13 nanoparticles are initially formed in alkaline solution using anatase nanoparticles as raw materials, and then gradually
grown to nanofibres along a certain crystalline axis obeyed the dissolution-growth mechanism. The pH value of washing solution has a significant influence on the structure and composition of the products. The nanofibres of K2Ti6O13, H2Ti3O7 and TiO2 can be obtained by the controlling of the pH value of washing solutions and heat-treatment temperature. The products, washed in solution with pH=7 and dried at 80℃, form the nanofibres of H2Ti3O7, which is subsequently calcined to form TiO2 nanofibres at 400℃.

参考文献

[1]
[2] Linsebigler A, Lu G, Yates T, et al. Chem. Rev., 1995, 95 (3): 735-758.
[2] Gratzel M. Nature, 2001, 414: 338-344.
[3] 宋 哲, 高 濂, 李 强(SONG Zhe, et al). 无机材料学报(Journal of Inorganic Materials), 1997, 12 (3): 445-449.
[4] Liu S M, Gan L M, Liu L H, et al. Chem. Mater., 2002, 14 (3): 1391-1397.
[5] 张青红, 高 濂, 郑 珊, 等. 化学学报, 2002, 60 (8): 1439-1444.
[6] 王保玉, 张景会, 刘 湛. 精细化工, 2003, 20 (6): 333-336.
[7] Bjoerk M T, Ohisson B J, Sass T, et al. Appl. Phys. Lett., 2002, 80 (6): 1058-1060.
[8] Idakiev V, Yuan Z Y, Tabakova T, et al. Applied Catalysis A: 2005, 281: 149-155.
[9] 张世英, 周武艺, 周 艺, 等. 硅酸盐学报, 2006, 34 (1): 55-59.
[10] Wu Yu, Liu Hongmei, Xu Boqing. Appl. Organometal. Chem., 2007, 21: 146-149.
[11] Zhang S, Peng L M, Chen Q, et al. Phys. Rev. Lett., 2003, 91: 1-4.
[12] Bian Chaoqing, Yu Yijun, Xue Gi. Journal of Applied Polymer Science, 2007, 104: 21-26.
[13] Wei Mingdeng, Konishi Yoshinari, Zhou Haoshen, et al. Chemical Physics Letters, 2004, 400: 231-234.
[14] Dmitry V Bavykin, Jens M Friedrich, Frank C Walsh. Adv. Mater., 2006, 18 (21): 2807-2824.
[15] 许云波, 延 卫, 刘湘鄂, 等. 西安交通大学学报, 2005, 39 (7): 693-696.
[16] Liu Suqin, Huang Kelong. Solar Energy Materials &
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%