欢迎登录材料期刊网

材料期刊网

高级检索

采用常压固相烧结法制备了Al-Ti共掺ZnO靶材, 采用射频磁控溅射技术及真空退火工艺, 在普通玻璃衬底上制备了具有[100]取向Al-Ti共掺杂ZnO薄膜(ZATO). 采用X射线衍射(XRD)、扫描电子显微镜(SEM)对ZATO薄膜的生长机理、显微结构、形貌进行了测试分析, 用四探针测试仪、紫外-可见分光光度计及荧光光谱仪对ZATO薄膜的光电性能进行了测试分析. 结果表明, ZATO薄膜经500℃保温3h退火后, 择优取向由(002)向(100)方向转变; 此时, 衍射谱上还观察到超点阵衍射线条. [100]取向ZATO薄膜的光学带隙从退火前的3.29降至2.86, 平均可见光透过率从90%降至70%, 表现为一般的透过性; 而电阻率则从1.89×10-2Ω·cm降至1.25×10-3Ω·cm, 呈现较好的导电性. 薄膜中均出现了380nm附近的带边发射(NBE)峰以及410、564nm的深能级发射峰, 且经500℃保温3h退火后, 这些峰的位置并未改变, 但峰强均明显减弱. 对上述实验机理进行了分析讨论.

Al-Ti codoped ZnO (ZATO) films with (100) preferred orientation were grown on the glass substrates at room temperature by RF magnetron sputtering. The Al-Ti codoped ZnO ceramic targets used for sputtering were prepared by the conventional solid-state sintering process. The growth mechanism, microstructures and surface figures of ZATO films were investigated by X-ray diffraction (XRD) and scanning electronic microscope (SEM), and its optical and electrical properties were respectively measured using a four-point probe technique and UV-756 spectrophotometer at room temperature. After the ZATO films annealed at 500℃ for 3h, the preferred growth orientation of the films changes from (002) to (100) orientation, and the optic band gap reduces from 3.29eV to 2.86eV, and the average transmittance reduces from 90% to 70%, but the room-temperature resistivity reduces from 1.89×10-2Ω·cm to 1.25×10-3 Ω·cm. And at the same time, there is a super-lattice diffraction ray in the XRD patterns of annealed the ZATO films. The photoluminescence (PL) spectra confirm that there exhibit the near-band-edge (NBE) emission peaks at 380nm, and 410nm, 564nm PL peaks of all the films. After the films are annealed at 500℃ for 3h, the strength of these PL peaks drops, but its positions change little. The above experimental mechanisms were discussed.

参考文献

[1] Nakamura S, Fukai M. Jap. Jnl. appl. phys., 1967, 5: 1473.
[2] Black P W, Wales J. Infrared Physics, 1968, 8: 209--222.
[3] Hilton A R. Journal of Electronic Materials, 1973, 2(2): 211--225.
[4] 陈福泉. 红外与激光技术, 1979, 3: 1--5.
[5] 冯长君. 结构化学学报, 2004, 23(5): 556--559.
[6] 徐士友. 化学物理学报, 2003, 16(3): 203--208.
[7] Holter M R. Fundamentals of Infrared Technology, New York: Macmillan, 1962. 128--129.
[8] Davies M. Infra-red Spectroscopy and Molecular Structure, Amsterdam: Elsevier, 1963. 2--3.
[9] Savage J A. Infrared Optical Materials and their Antireflection coatings, UK: Adam Hilger Ltd., 1985. 7--9.
[10] Randic M. J. Am. Chem. Soc., 1975, 97(25): 6609.
[11] Kier L B, Hall H. Molecular Connectivity in Chemistry and Drug Research, New York: Academic Press, 1976. 82.
[12] 冯长君. 分析科学学报, 2002, 18(2): 27--32.
[13] Weast R C, Astle M J, Beyer W H. Handbook of Chemistry and Physics 69th Ed., 63rd edtion. Florida: CRC Press, 1989. 101.
[14] 蒋玉仁, 刘志国, 刘景亚, 等. 物理化学学报, 2003, 19(3): 198--202.
[15] Deutsch T F. J. Phys. Chem. Solids, 1973, 34: 2091--2104.
[16] Francen, Lussier M. Laser Focus, 1976, 12(12): 47--50.
[17] Wolfe W L, Zissis G J. the Infrared Handbook, Office of Naval Research, Dept.
of the Navy, Washington, D.C., 1978. 7--16.
[18] Reiss H. Progress in Solid State Chemistry, 1st edition. London: Prergamon Press, 1964. 77.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%