欢迎登录材料期刊网

材料期刊网

高级检索

以钛酸四丁酯为原料, 采用水热法分别以蒸馏水、有机小分子化合物(正丁醇、丙二酸和乙二胺水溶液)和无机酸(HNO3、H2SO4和HCl)为介质合成了TiO2纳米粉体. 通过XRD和TEM对所得TiO2粉体进行了表征, 研究不同介质对所得TiO2粉体的晶相组成、颗粒尺寸及形貌的影响. 结果表明: 以蒸馏水为介质时所得锐钛矿TiO2的颗粒尺寸分布不均匀; 有机化合物抑制锐钛矿型TiO2各向异性生长趋势的能力为: 正丁醇>丙二酸>乙二胺; 相同实验条件下, HCl、H2SO4及HNO3体系中分别获得金红石、锐钛矿及锐钛矿和金红石混晶TiO2. 光催化降解甲基橙的研究表明, 锐钛矿和金红石混晶TiO2的光催化活性要高于纯锐钛矿结构; 纯金红石型TiO2的光催化活性最差.

TiO2 nanopowders were prepared by hydrothermal synthesis in distilled water, three small organic compounds (n-butyl alcohol, propane diacid and ethylenediamine) and three inorganic acids (HNO3, H2SO4 and HCl) using the titanium n-buoxide as raw material. The product was characterized by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The effect of different solvent medium on the crystal phase composition, particles size and morphology of the product was investigated. The result shows that anatase TiO2 with non-uniform grain size is obtained in distilled water. The ability to retard the anisotropic growth of anatase is as follows: n-butyl alcohol>propane diacid>ethylenediamine. Under the same experiment condition, rutile, anatase and mixed crystallite of anatase and rutile TiO2 powders are obtained in HCl, H2SO4 and HNO3 medium, respectively. The result of photocatalytic degradation methyl orange shows that the photocatalytic activity of mixed crystallite of anatase and rutile TiO2 powders is higher than that of the pure anatase TiO2 powders. The photocatalytic
activity of pure rutile TiO2 powders is worst.

参考文献

[1] Zhang Q H, Fan W G, Gao L. Appl. Catal. B Environ., 2007, 76 (1-2): 168-173.
[2] Yurdakal S, Loddo V, Augugliaro V, et al. Catal. Today, 2007, 129 (1-2): 9-15.
[3] Shen Q H, Yang H, Gao J W, et al. Mater. Lett., 2007, 61 (19-20): 4160-4162.
[4] Garcia J C, Oliveira J L, Silva A E C, et al. J. Hazardous Mater., 2007, 147 (1-2): 105-110.
[5] Kim S Y, Yu J H, Lee J S. Nanostructured Mater., 1999, 12 (1-4): 471-474.
[6] Nakaso K, Okuyama K, Shimada M, et al. Chem. Eng. Sci., 2003, 58 (15): 3327-3335.
[7] Kao L H, Hsu T C, Lu H Y. J. Colloid Interface Sci., 2007, 316 (1): 160-167.
[8] 向礼琴, 尹剑波, 高文帅, 等(XING Li-Qin, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (2): 253-258.
[9] 张青红, 高濂, 郭景坤(ZHANG Qing-Hong, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (6): 992-998.
[10] Kim G G, Kim J H, Kang J A, et al. Catal. Comm., 2007, 8 (6): 861-864.
[11] Yang X F, Konishi H, Xu H F, et al. Eur. J. Inorg. Chem., 2006, 2006 (11): 2229-2235.
[12] 秦纬, 刘建军, 左胜利, 等(QIN Wei, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (5): 931-936.
[13] Sugimoto T, Zhou X P, Muramatsu A. J. Colloid Interface Sci., 2003, 259 (1): 53-61.
[14] Jiang B P, Yin H B, Jiang T S, et al. Mater. Chem. Phys., 2005, 92 (2-3): 595-599.
[15] Wu M M, Lin G, Chen D H, et al. Chem. Mater., 2002, 14 (5): 1974-1980.
[16] Klug H P, Alexander L E. X. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Uaterials, New York: Wiley, 1974. 618.
[17] Yu J C, Yu J, Ho W, et al. Chem. Commun., 2001, 1 (19): 1942-1943.
[18] Ohno T, Tokieda K, Higashida S, et al. Appl. Catal. A, 2003, 244 (2): 383-391.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%