欢迎登录材料期刊网

材料期刊网

高级检索

为了合成单相以及Yb3+、 Er3+掺杂的六方结构NaYF4,采用微波水热的方法,以稀土硝酸盐、氟化钠、柠檬酸、氢氧化钠、乙酸乙酯和水为原料,合成了六方相NaYF4以及Yb3+、Er3+掺杂的六方相NaYF4 (NaYF4∶Yb3+,Er3+)微米管. 利用XRD、SEM对所得样品的物相和形貌进行了表征. 研究了不同反应条件对产物形貌和物相的影响,并提出了NaYF4微米管的形成机理. 研究发现,采用微波加热的方法可以在较低的温度下快速得到单一六方相的NaYF4. 所制备的Yb3+、 Er3+掺杂NaYF4微米管的上转换发光性能与其体材料类似,具有较高的发光强度.

NaYF4 and Yb3+,Er3+doped NaYF4 (NaYF4∶Yb3+,Er3+) microtubes with a hexagonal structure were prepared by a simple microwave hydrothermal method at a relatively low temperature in a short period of time without using toxic trifluoroacetic acid. The starting reagents used in the preparation are Y(NO3)3 (also using Yb(NO3)3 and Er(NO3)3 in the case of doping), NaF, citric acid, NaOH and ethyl acetate, and deionized water is used as the solvent. The asprepared samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscope (SEM). The effects of experimental parameters on the morphology and the crystal phase of the product were investigated. And the upconversion photoluminescence properties of the NaYF4∶Yb3+,Er3+ microtubes were investigated. NaYF4 microtubes with single hexagonal phase are obtained by microwave heating method at a lower temperature in a short period. The formation mechanism of NaYF4∶Yb3+,Er3+ microtubes is proposed. The prepared NaYF4∶Yb3+,Er3+ microtubes have high luminescence intensity.

参考文献

[1] ]Krmer K M, Biner D, Frei G, et al. Chem. Mater., 2004, 16(7): 1244-1251. [2]Menyuk N, Dwight K, Pierece J W. Appl. Phys. Lett., 1972, 21(4): 159-161.
[3]Zeng J H, Su J, Li Z H, et al. Adv. Mater., 2005, 17(17): 2119-2123.
[4]Wang Z J, Tao F, Yao L Z, et al. J. Crystal Growth, 2006, 290(1): 296-300.
[5]Sun Y J, Chen Y, Tian L J, et al. Nanotechnology, 2007, 18(27): 275609-1-9.
[6]Li C X, Quan Z W, Yang J, et al. Inorg. Chem., 2007, 46(16): 6329-6337. [7]Li C X, Yang J, Quan Z W, et al. Chem. Mater., 2007, 19(20): 4933-4942. [8]Zhuang J L, Liang L F, Sung H H Y, et al. Inorg. Chem., 2007, 46(13): 5404-5410.
[9]Li C X, Quan Z W, Yang P P, et al. J. Mater. Chem., 2008, 18(12): 1353-1361.
[10]Li C X, Yang J, Yang P P, et al. Cryst. Growth Des., 2008, 8(3): 923-929.
[11]Wei Y, Lu F Q, Zhang X R, et al. Chem. Mater., 2006, 18(24): 5733-5737.
[12]Wang L Y, Li Y D. Nano Lett., 2006, 6(8): 1645-1649.
[13]Wang L Y, Li Y D. Chem. Mater., 2007, 19(7): 727-734.
[14]Wei Y, Lu F Q, Zhang X R, et al. J. Alloys Compounds, 2008, 455(1-2): 376-384.
[15]Ghosh P, Patra A. J. Phys. Chem. C, 2008, 112(9): 3223-3231.
[16]Heer S, Kmpe K, Güdel H U, et al. Adv. Mater., 2004, 16(2324): 2102-2105.
[17]Schfer H, Ptacek P, Kmpe K, et al. Chem. Mater., 2007, 19(6): 1396-1400.
[18]Li Z Q, Zhang Y. Angew. Chem. Int. Ed., 2006, 45(46): 7732-7735.
[19]Yi G S, Chow G M. Adv. Funct. Mater., 2006, 16(18): 2324-2329.
[20]Yi G S, Chow G M. Chem. Mater., 2007, 19(3): 341-343.
[21]Boyer J C, Cuccia L A, Capobianco J A. Nano Lett., 2007, 7(3): 847-852.
[22]Mai H X, Zhang Y W, Si R, et al. J. Am. Chem. Soc., 2006, 128(19): 6426-6436.
[23]Zhu Y J, Wang W W, Qi R J, et al. Angew. Chem. Int. Ed., 2004, 43(11): 1410-1414.
[24]Tsuji M, Hashimoto M, Nishizawa Y, et al. Chem. Eur. J., 2005, 11(2): 440-452.
[25]Martin N, Boutinaud P, Mahiou R, et al. J. Mater. Chem., 1999, 9(1): 125-128.
[26]Suyver J F, Grimm J, Kramer K W, et al. J. Lumin., 2005, 114(1): 53-59.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%