欢迎登录材料期刊网

材料期刊网

高级检索

采用Si-Y_2O_3包埋共渗工艺在铌硅化物基超高温合金表面制备Y改性的硅化物涂层, 研究其在1250℃的恒温氧化性能. 采用扫描电镜(SEM)、能谱(EDS)与X射线衍射(XRD)分析Si-Y_2O_3共渗涂层氧化前后的物相组成和组织变化. 结果表明:涂层具有明显分层的结构, 由外至内依次为(Nb,X)Si_2(X表示Ti, Hf和Cr)外层和(Nb,X)_5Si_3过渡层, 在过渡层与基体之间有不连续分布的细小(Cr,Al)_2(Nb,Ti)块状沉淀. EDS分析表明, 涂层中的Y分布是不均匀的, (Cr,Al)_2(Nb,Ti)相的Y含量为0.94at%左右, 而(Nb,X)Si_2和(Nb,X)_5Si_3相的Y含量为0.46at%~0.57at%. 经1250℃分别氧化5, 10, 20, 50和100h后, Si-Y_2O_3共渗涂层保持其原始的相组成, 并在其表面形成以TiO_2、 SiO_2和Cr_2O_3组成的致密混合氧化膜, 且与基体结合良好.

Si-Y_2O_3 co-deposition coatings on Nb-silicide-based ultrahigh temperature alloy were prepared by pack cementation processes. The co-deposition holding temperatures were 1050℃, 1150℃ and 1250℃, and the holding times were 5, 10, 15 and 20h, respectively. The microstructure and isothermal oxidation resistance of the coatings were studied. The results show that all Si-Y_2O_3 co-deposition coatings are composed of a (Nb,X)Si_2 (X represents Ti, Hf and Cr elements) outer layer and a (Nb,X)_5Si_3 transitional layer. Some thin discontinuous (Cr,Al)_2(Nb,Ti) laves phase precipitates exist between the substrate and (Nb,X)_5Si_3 transitional layer. EDS analyses reveal that the distribution of Y on the coatings is not uniform. The content of Y in (Nb,X)Si_2 and (Nb,X)_5Si_3 phases is about 0.46at%-0.57at% while that in (Cr,Al)_2(Nb,Ti) is about 0.94at%. After oxidation at 1250℃ for 5, 10, 20, 50 and 100h respectively, the retained Si-Y_2O_3 co-deposition coatings still possess double layers structure with their original constituent phases and combine tightly with both scale and substrate. The dense scale developed on Si-Y_2O_3 co-deposition coatings during oxidation at 1250℃ is composed of TiO_2, SiO_2 and Cr_2O_3. Si-Y_2O_3 co-deposition coatings possess better oxidation resistance than simple Si deposition coatings.

参考文献

[1] Bewlay B P,Jackson M R,Zhao J C,et al.Metallurgical and Materials Transactions A,2003,34A(10):2043-2052.
[2] Xiao L R,Cai Z G,Yi D Q,et al.Trans.Nonferrous Metals Soc.China,2006,16(s1):s239-s244.
[3] Tatemoto K,Ono Y,Suzuki R O.Journal of Physics and Chemistry of Solids,2005,66(2/3/4):526-529.
[4] 赵陆翔,郭喜平,姜嫄嫄.中国有色金属学报,2007,17(4):596-601.
[5] Fisher G,Datta P K,Burnell-Gray J S,et al.Surface and Coatings Technology,1998,110(1/2):24-30.
[6] Liu A Q,Sun L,Li S S,et al.Journal of Rare Earth,2007,25(4):474-479.
[7] Zhou Y B,Chen H,Zhang H,et al.Vacuum,2008,82(8):748-753.
[8] Cockeram B V.Surface and Coatings Technology,1995,76-77(1/2/3):20-27.
[9] Mahdouk K,Gachon J C.Journal of Alloys and Compounds,2001,321(2):232-236.
[10] Hellwig A,Palm M,Inden G.Intermetallics,1998,6(2):79-94.
[11] Shao G.Intermetallics,2004,12(6):655-664.
[12] David N,Cartigny Y,Belmonte T,et al.Intermetallics,2006,14(4):464-473.
[13] 庞洪梅,齐慧滨,何业东,等.中国有色金属学报,2001,11(2):187-192.
[14] Mitra R,Rao V V Rama.Metallurginal and Materials Transactions A,1998,29A(6):1665-1675.
[15] 赵陆翔.铌硅化物基超高温合金包埋渗Si层的组织形成及高温抗氧化性能.西安:西北工业大学硕士论文,2007.
[16] 郭建亭,袁超,侯介山.金属学报,2008,44(5):513-520.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%