欢迎登录材料期刊网

材料期刊网

高级检索

通过Sol-Gel法制备出Ni颗粒表面均匀包覆尿素掺杂二氧化钛涂层的纳米核壳颗粒Ni/(TiO_2+Urea),对其电流变行为进行了研究.结果表明颗粒热处理温度和尿素加入量对其电流变活性有较大影响,热处理温度高于320℃以后剪切强度明显降低;尿素与Ti的质量比为30%时,剪切强度达到40kPa(4kV/mm直流电场),是无尿素时的10倍,但过量的尿素使强度下降.显微镜观察直流电场下电流变液的结构显示,尿素与Ti的质量比为30%时核壳颗粒电流变液形成的柱粗壮、致密,尿素过量时柱产生断裂,无尿素时柱纤细、疏松.尿素中的极性分子是影响Ni/(TiO_2+Urea)颗粒电流变行为的重要因素.

The Ni/(TiO_2 + Urea)core-shell nano particles composed of nano Ni particles and urea-doped TiO_2 coating, were synthesized by using Sol-Gel method, and their electrorheological (ER) behaviors were investigated. The results show that ER activity of the particles are closely associated with heat-treatment tem-perature and urea content. The shear stress decreases when the particles is heat-treated above 320℃. When the mass ratio of urea to Ti is 30%, the shear stress of the ER fluid made from Ni/(TiO_2 + Urea) particles reaches 40kPa (the DC electric field is 4kV/mm), which is 10 times as high as that made from particles without urea. However, the shear stress decreases when excessive urea is added. The microstructure obser-vation of the ER fluids under DC electric field shows that the particles aggregate to form thicker and dense column structure when the mass ratio of urea to Ti is 30%, while the column structure is broken when exces-sive urea (> 30%) is added. A thin and loose column structure is formed in ER fluid without urea added.It is suggested that the ER behaviors is substantially correlated with the polar molecules in urea.

参考文献

[1] Block H,Kelly J P.Electro-theology.J.Phys.D:Appl.Phys.,1988,21:1661-1667.
[2] Halsay T C.Electrorheological fluids.Science,1992,258(5083):761-766.
[3] Whittle M,Bullough W A.The structure of smart fluids.Nature,1992,385:373.
[4] 王宝祥,左朝阳,赵晓鹏(WANG Bao-Xiang,et al).改性高岭土/氧化钛复合材料的制备及其高电流变活性.无机材料学报(Journal of Inorganic Materials),2004,19(4):886-870.
[5] Yin J B,Zhao X P.Preparation and enhanced electrorheological activity TiO_2 doped with chromium Ion.Chem.Mater.,2004,16(2):321-328.
[6] 路阳,王学昭,王风平,等.电流变液研究新进展.材料导报,2009,23(2):6-8.
[7] 庞雪蕾,唐芳琼(PANG Xue-Lei,et al).电流变液体的研究进展.化学进展(Prog.Chem.),2004,16(6):849-857.
[8] 乔荫颇,尹剑波,赵晓鹏.表面改性纳米氧化钛的强电流变效应.材料研究学报,2006,20(4):417-421.
[9] 赵艳,王宝祥,赵晓鹏(ZHAO Yah,et al).Cr离子改性氧化钛/丙烯酰胺纳米电流变液及其性能研究.无机材料学报(Journal of Inorganic Materials),2006,21(3):671-675.
[10] 王学昭,沈容,温维佳,等.钛酸钙体系电流变液的研究.功能材料,2006,37(5):681-683.
[11] Conrad H,Wit C W,Tang X,Conductivity in electrorheology,in proc.of the 6~(th) Iht.Conf on ERF,MR suspensions and their Applications,Nakano M,Koyama K.ed.Singapore:World Scientific,1998,77.
[12] Wu C W,Conrad H.Multi-coated spheres:recommended electrorheological particles.J.Phys.D:Appl.,1998,31:3312-3315.
[13] Tam W Y,Yi G H,Wen W J,et al.New electrorheotogical fluid:theory and experiment.Phys.Rev.Lett.,1997,78 (15):2987-2990.
[14] Men S,Xu X,Lan Y,et al.The electrostatic interaction between coated particle in a host liquid.In:Tao R,Shaw S eds.Proc.7~(th) Inter.Conf.on ER Fluids and MR Suspensions.Hono2 lala Hawaii,1999,246-251.
[15] 温维佳,黄先祥.杨世和,等(WEN Wei-Jia,et al).巨电流变效应及其机理.物理(Physics),2003,32(12):777-779.
[16] Wu C W,Conrad H.Shear strength of electrorheological particle clusters.J.Mater.Sci.Eng.A,1998,248:161-164.
[17] 刘秧生,官建国,马会茹.聚苯胺修饰草酸氧钛钡电流变性能的研究.功能材料,2008,39(11):1832-1834.
[18] Lu K Q,Shen R,Wang X Z,et al.Polak molecule type electrorheological fluids.Int.J.Mod.Phys.B,2007,21 (28/29):4798-4805.
[19] Shen R,Wang B Z,Wen W J.TiO_2 based electrorheelogical fluid with high yield stress,et al.Int.J.Mod.Phys.B,2005,19(7/8/9):1104-1109.
[20] Lu K Q,Shen R,Wang W J,et al.The electrorheological fluids with high shear stress.Int.J.Mod.Phys.B,2005,19(7/8/9):1065-1070.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%