欢迎登录材料期刊网

材料期刊网

高级检索

采用CG/MS定性定量分析了MTS/H2体系CVD SiC的气相组成,考察了沉积温度、总压和流量对气相组成的影响,从反应速率和分子浓度大小的角度出发,分析了MTS在H2中的分解步骤.主要结论如下:(1)检测到CH4、C2H6、C2H4、C3H6、C2H2、MTS、SiCl4和CH3SiHCl2物质,其中CH4和SiCl4的含量较高.(2)体系温度、总压和总流量对气相组成有显著影响,其影响规律与热力分析结果一致.(3)MTS主要以Si-C键断裂引发分解反应,经历与原反应气反应、中间物质和副产物生成等主要阶段,CH3→C2H6→C2H4→C2H2是生成烷烃化合物的主要路径.

参考文献

[1] Rottner K,Frischholz M,Myrtveit T,et al.SiC power devices for high voltage applications.Materials Science and Engineering B,1999,61-62:330-338.
[2] 徐永东,张立同,成来飞,等(XU Yong-Dong,et al).碳/碳化硅摩阻复合材料的研究进展.硅酸盐学报(Journal of the Chinese Ceramic Society),2006,34(8):992-999.
[3] Ohnabe H,Masaki S,Onozuka M,et al.Potential application of ceramic matrix composites to aero-engine components.Composites,1999,Part A,30(4):489-496.
[4] 孟广耀编著.化学气相淀积与无机新材料.北京:科学出版社.1984:4.
[5] Allendorf M D,Melius C F.Understanding gas-phase reactions in the thermal CVD of hard coatings using computational methods.Surface and Coatings Technology,1998,108-109(1/2/3):191-199.
[6] Brennfleck K,Schneweis S,Weiss R.In-situ spectroscopic monitoring for sic-cvd process control.J.Phys.Ⅳ.,1999,9(8):1041-1048.
[7] Jonas S,Ptak W S,Sadowski W,et al.FTIR in-situ studies of the gas phase reactions in chemical vapor deposition of SiC.J.Electrochem.Soc.,1995,142(7):2357-2362.
[8] Heinrich J,Hemeltjen S,Marx G.Analytics of CVD processes in the deposition of SiC by methyltrichlorosilane.Mikrochim.Acta,2000,133(1-4):209-214.
[9] 朱庆山,邱学良,马昌文.化学气相沉积制备SiC-Ⅱ.动力学研究.化工冶金,1998,19(4):289-292.
[10] 肖鹏,徐永东,黄伯云(XIAO Peng,et al).沉积条件对CVD-SiC沉积热力学与形貌的影响.无机材料学报(Journal of Inorganic Materials),2002,17(4):877-881.
[11] 卢翠英,成来飞,张立同,等(LU Cui-Ying,et al).丙烯沉积热解碳的原位动力学分析.复合材料学报,2008,25(6):152-155.
[12] 卢翠英,成来飞,张立同,等(LU Cui-Ying,et al).化学气相沉积碳化硅的热力学分析.无机材料学报(Journal of Inorganic Materials),2008,23(6):1189-1192.
[13] Allendorf M D,Melius C F.Theoretical study of the thermochemistry of molecules in the Si-C-Cl-H system.J.Phys.Chem.,1993,97(3):720-728.
[14] Papasouliotis D,Sotirchos S V.On the homogeneous chemistry of SiC-based ceramics from CH3SiCl3/H2 gas precursor.J.ElectroChem.Soc.,1994,141(6):1599-1611.
[15] Hidaka Y,Oki T,Kawano H.Thermal decomposition of propane in shock waves.Int.J.Chem.Kinetics,1989,21(8):689-701.
[16] Cao J R,Back M H.Kinetics of the reaction C2Hs + H2 → C2H6 +H from 1111-1200 K.Can.J.Chem.,1982,60(24):3039-3048.
[17] Allendorf M D,Kee R J.A model of silicon carbide chemical vapor deposition.J.Electrochem.Soc.,1991,138(3):841-853.
[18] Stewart P H,Psmith G,Golden D M.The pressure and temperature dependence of methane decomposition.Int.J.Chem.Kinetics,1989,21(10):923-945.
[19] Westbrook C K,Pitz W J.A comprehensive chemical kinetic reaction mechanism for oxidation and pyrolysis of propane and propene.Comb.Sci.Tech.,1984,37(3/4):117-152.
[20] Cagliostro D E,Riccitiello S R.Model for the formation of silicon carbide from the pyrolysis of dichlorodimethylsilane in hydrogen:I silicon formation from chlorosilanes.J.Am.Ceram.Soc.,1993,76(1):39-48.
[21] Cagliostro D E,Riccitiello S R.Model for The formation of silicon carbide from the pyrolysis of dichlorodimethylsilane in hydrogen:silicon carbide formation from silicon and methane.J.Am.Ceram.Soc.,1993,76(1):49-53.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%