欢迎登录材料期刊网

材料期刊网

高级检索

以低模量钛合金(Ti35Nb和Ti35Nb15Zr)为阳极氧化基材, 采用表面阳极氧化方法制备出铌元素和锆元素掺杂的非晶TiO2纳米管阵列, 比较了掺杂前后纳米管的润湿性能与体外生物活性. 实验结果表明, 加入铌和锆元素可减小TiO2纳米管的管径, 并有助于增大TiO2纳米管的长度. TiO2纳米管表现出与未氧化前的金属基材所不同的疏水行为. 掺杂TiO2纳米管的润湿性随着掺杂元素的变化而变化, 铌元素的掺杂可使TiO2纳米管的润湿性改善, 铌元素和锆元素共同掺杂对润湿性的改善作用更明显. 在模拟体液(SBF)中浸泡后, 掺杂TiO2纳米管可快速诱导磷灰石的形成. 铌锆元素共同掺杂的纳米管在初始浸泡阶段呈现较快的磷灰石沉积速率. 上述研究结果表明, 可以通过基材合金化设计来调控或修饰材料表面的亲水或疏水性能, 从而探索掺杂TiO2纳米管的生物学性能. 

With low-modulus alloys of Ti35Nb and Ti35Nb15Zr as the anodization substrates, amorphous TiO2 nanotube arrays doped by Nb and Zr elements were fabricated through a surface anodization method. The wettability and in vitro bioactivity of the doped TiO2 nanotubes and undoped nanotubes were investigated. Experimental results indicated that the existence of Nb and Zr elements in the anodic oxides could refine the diameter of the nanotubes and help to grow longer nanotubes. All of the as-anodized nanotubes demonstrated a hydrophobic behavior, which was different from those of the metallic substrate surface. The wettability of the TiO2-based nanotubes varied with the type of the substrate or dopant element. The doping with Nb element could improve the wetting behavior of the TiO2 nanotubes. And simultaneous doping with Nb and Zr elements could have more significant improvement in the wetting behavior. After immersion in simulated body fluids (SBF) the doped TiO2 nanotubes could induce a quick apatite formation. The Nb/Zr doped nanotubes presented quicker apatite formation rate than the Ti-Nb-O nanotubes did at the initial immersion stage. The above findings make it possible to further control or modify the wettability toward either hydrophobic or hydrophilic surfaces, and explore related biological properties of the doped nanotubes.

参考文献

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%