欢迎登录材料期刊网

材料期刊网

高级检索

通过设计反相微乳液反应体系,在水热条件下缓慢氧化SnF2,合成了单分散的四方形SnO2纳米晶.利用X射线多晶粉末衍射、扫描电镜、高分辩透射电镜对合成样品的形貌和结构进行了表征.实验结果表明,通过控制油胺的添加量调控微乳液水相的pH值,可以对SnO2的形貌进行调控.使用适当量的油胺,可以获得分散性极好、大小为10 nm左右的规则四方SnO2纳米晶.合适的pH值有利于晶核的定向生长,从而在微乳液反应器中形成了规则的SnO2四方纳米晶.

A nanosized reverse microemulsion reactor was designed for the fabrication of monodispersed SnO2 nanosquares by oxidation of SnF2 under hydrothermal conditions. As-prepared samples were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope and high resolution transmission electron microscope. The results show that the morphology of the SnO2 nanocrystals can be controlled by regulating the amount of the used oleylamine which direct influenced the pH values of the aqueous phase. Well monodispersed SnO2 nanosquares with the size around 10 nm can be obtained. A proper pH value could benefit the oriented attachments of the crystalline seeds which gradually grew into a square-plate NCs shape in the microemulsion reactor.

参考文献

[1] Yang T H,Guo YL,Zhou X C,et ai.Preparation of amorphous carbon-coated nano-scale SnO2 and its performance for anode material of lithium ion secondary battery.Journal of Inorganic Materials,2009,24(1):147-151.
[2] Zhang J P,Gao L.Synshesis and characterization of tin oxide nanocrystals for gas sensor application.Journal of Inorganic Materials,2005,20(2):466-469.
[3] Chiu H C,Yeh C S.Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol.J.Phys.Chem.C,2007,111(20):7256-7259.
[4] Kuang Q,Lao C S,Wang Z L,et al.High-sensitivity humidity sensor based on a single SnO2 nanowire.J.Am Chem.Soc.,2007,129(19):6070-6071.
[5] Wang Z L,Pan Z.Junctions and netwotks of SnO nanoribbons.Adv.Mater.,2002,14(15):1029-1032.
[6] Zhang D F,Son L D,Yin J L,et al.Low-temperature fabrication of highly crystalline SnO2 nanorode.Adv.Mater.,2003,15(12):1022-1025.
[7] Dai Z R,Pan Z W,Wang Z L.Growth and structure evolution of novel tin oxide diskettes.J.Am.Chem.Soc.,2002,124(29):8673-8680.
[8] Wang Y,Lee J Y,Zeng H C.Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application.Chem.Mater.,2005,17(15):3899-3903.
[9] Selvan R K,Perelshtein I,Perkas N,et al.Synthesis of hexagonal-shaped SnO2 nanoctystais and SnO2@C nanocomposites for electrochemical redox supercapacitors.J.Phys.Chem.C,2008,112(6):1825-1830.
[10] Zhong Z,Yin Y,Gates B,et al.Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads.Adv.Mater.,2000,12(3):206-209.
[11] Budaka S,Miaoa G X,Ozdemira M,et al.Growth and characterization of single crystalline tin oxide (SnO2) naowires.J.Cryst.Growth,2006,291(2):405-411.
[12] Hu J,Bando Y,Liu Q,et al.Laser-ablation growth and optical properties of wide and long single-crtystal SnO2 ribbons.Adv.Func.Mater.,2003,13(6):493-496.
[13] Guo C,Cao M,Hu C.A novel and low-temperature bydrothermal synthesis of SnO2 nanorods.Inorg.Chem.Commun.,2004,7(7):929-931.
[14] Yu C L,Yu J C,Wang F,et al.Growth of single-crystalline SnO2 nanocubes via a hydrothermal route.Cryst.Eng.Comm.,2010,12(2):341-343.
[15] Maria J A,Pedro L,Bernardo L,et al.On the use of the reverse micelles synthesis of nanomaterials for fithium-ion batteries.J.Solid.State Electrochem.,2009,14(10):1749-1753.
[16] Wang Z L,Liu Y,Zhang Z.Handbook of nanophase and nanostructured materials.Berlin:Springer,2002:1-28.
[17] Joachim K Komelia G,Sabine K.Formation of organically and inorganically passivated CdS nanoparticles in reverse microemulsions.Colloid Polym.Sci.,2010,288(3):257-263.
[18] Deng H,Yang S H,Xiao S,et al.Controlled synthesis and upconvcrted avalanche luminescence of cerium(Ш)and neodymium(Ш)orthovanadate nanocrystals with high uniformity of size and shape.J.Am.Chem.Soc,2008,130(6):2032-2040.
[19] Robinson R D,Sadtler B,Demchenko D O,et al.Spontaneous super lattice formation in nanorods through partial cation exchange.Science,2007,317(20):355-358.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%