欢迎登录材料期刊网

材料期刊网

高级检索

为满足骨组织工程对支架孔隙可控及良好力学性能的要求, 基于低温沉积制造方法, 加工了壳聚糖-纳米羟基磷灰石多孔组织工程支架. 开发了载荷力挤出喷头, 实现了加工过程材料挤出的均匀性, 层与层粘接良好. 研究了支架分级结构的形成规律, 支架孔隙由大孔和微孔组成, 大孔完全联通, 且大小完全可控; 微孔由材料配比, 成型温度, 交联剂等参数影响, 较高的纳米羟基磷灰石含量获得较小的孔隙; 较低的成型温度获得更大的孔隙, 交联剂使微孔变小. 小鼠前成骨细胞系MC3T3-E1支架培养结果表明, 较高的纳米羟基磷灰石含量提高了支架的生物活性, 联通的大孔, 保证了细胞爬行至支架的中心位置.

To meetthe requirement of scaffold in bone tissue engineering with controllable macroand micro pores and good mechanical properties, chitosan-nanohydroxyapatite 3Dporous scaffolds were fabricated by low- temperature depositionmanufacturing. A load force driven injecting nozzle was proposed and developedto extrude natural derived polymers. Strand of biomaterials was extruded steady,uniformly and bonded to each other well. Hierarchial structure of scaffold wasstudied. Morphology of scaffold’s pores contains macropores and micropores. Macroporesare fabricated controllably according to fabricating path. Morphology of microporesare affected by materials ratio and fabricating temperature, cross-link, etc. A higher nanohydroxyapatite ratioleads to smaller micropores. Larger micropores are obtained under lowerfabriacating temperature. Cross-link causes micropores become smaller. Resultsof in vitro mouse MC3T3-E1 cellculture studies reveal a good biocompatibility for a high nanohydroxyapatitecontent scaffold. The regular and highly interconnected macropores ensure cellsto migrate into the center of 3D scaffold.

参考文献

[1] Alberto D M, Michael S, Makarand V, et al. Chitosan: a versatile biopolymer for orthopaedictissue-engineering. <>Biomaterials, 2005, 26(30): 5983-5990.
[2] Kong L J, Gao Y, Cao W L, etal. Preparation and characterization of nano-hydroxyapatite/chitosancomposite scaffolds. J. Biomed. Mater.Res. Part A, 2005, 75A(2): 275-282.
[3] Webster T J, Ergun C, Doremus RH, et al. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21(17): 1803-1810.
[4] Aylin S U, Russell D. The addition of biphasic calcium phosphate toporous chitosan scaffolds enhances bone tissue development in vitro. J. Biomed. Mater.Res. A, 2007, 81A(3): 624-633.
[5] Madihally S V, Matthew H W. Porous chitosan scaffolds for tissueengineering. Biomaterials, 1999, 20(12): 1133-1142.
[6] Ang T H, Sultana F S, Hutmacher D W,<> etal. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a roboticdispensing sys- tem. Materials Scienceand Engineering C, 2002, 20(1/2): 35-42.
[7] Liu L, Xiong Z, Yan Y N, <>et al. Porousmorphology, porosity, mechanical properties of poly(-hydroxy acid)-tricalciumphosphate composite scaffolds fabricated by low-temperature deposition. J. Biomed. Mater. Res. A, 2007, 82A(3): 618-629.
[8] Kim G H, Ahn S H, Yoon H, et al. A cryogenic direct-plottingsystem for fabrication of 3D collagen scaffolds for tissue engineering. J. Mater. Chem., 2009, 19: 8817-8823.
[9] Liu L, Xiong Z, Yan Y N, et al. Multinozzle low-temperaturedeposition system for construction of gradient tissue engineering scaffolds. J. Biomed. Mater. Res. B, 2008, 88B(1): 254-263.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%