欢迎登录材料期刊网

材料期刊网

高级检索

利用氯化钙-乙醇-水(n(CaCl2):n(EtOH):n(H2O)=1:2:8)三元溶液对丝素蛋白纤维预处理, 再采用交替浸渍法将其分别浸在钙溶液和磷溶液中交替浸渍、仿生矿化制备丝素蛋白纤维/磷灰石复合材料, 采用SEM、FTIR、XRD和TGA等技术研究了不同预处理时间对丝素蛋白纤维微结构和构建丝素蛋白纤维/磷灰石的影响. 结果表明, 预处理增加了丝素蛋白纤维表面粗糙程度及内部孔隙率, 并使钙离子与丝素蛋白纤维中的羧基、羟基和酰胺基等基团先发生作用, 可以有效地提高磷灰石在丝素蛋白表面的沉积量, 使得预处理后的丝素蛋白纤维与磷灰石的结合更均匀、密实, 获得了磷灰石晶体沿c轴取向生长的仿骨结构的复合材料.

To develop biomimetic fibroin/apatite composites with bone-like structure byalternate soaking method, the degummed natural fibroin fibers were pretreatedby soaking into CaCl2:EtOH:H2O (<>n(CaCl2):<>n(EtOH):<>n(H2O)=1:2:8) solution for given time and then soaked into calciumsolution and phosphate solution, respectively, to fabricate fibroin/apatite composites. The effects of pretreatment time andthe alternate soaking times on fibroin microstructure and fibroin/apatitecomposites were examined by SEM, FTIR, XRD and TGA techniques. The pretreatmentusing CaCl2:EtOH:H2O(<>n(CaCl2):<>n(EtOH):<>n(H2O)=1:2:8) solution makes fibroin fiber exhibit rougher surface and higher internalporosity, which is beneficial to interaction of calcium ion and residue groupssuch as -COOH, –OHand -CONH- from fibroin, and then improvethe deposition of apatite on fibroin fibers. The homogeneous apatites withoriented <>c-axis were formed on the pretreated fibroin fibers. Moreover,there are more than 30wt% apatites deposited on fibroin fibers after alternatesoaking for more than 3 times. The fibroin/apatite composite has potential tobe applied as bone repair materials.

参考文献

[1] Olszta M J, Cheng X G, Jee S S, et al. Bone structure and formation: a new perspective. Mat. Sci. Eng. R, 2007, 58(3/4/5): 77-116.

[2] 崔福斋, 冯庆玲. 生物材料学. 北京: 科学出版社, 1996.

[3] Du C, Cui F Z, Feng Q L, et al. Tissue response to nano-hydroxyapatite/ collagen composite implants in marrow cavity. J. Biomed. Mater. Res., 1998, 42(4): 540-548.

[4] Li X M, Feng Q L, Liu X H, et al. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials, 2006, 27(9): 1917-1923.

[5] O'Briena F J, Harley B A, Yannas I V, et al. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 2005, 26(4): 433-441.

[6] Vepari C, Kaplan D L. Silk as a biomaterial. Prog. Polym. Sci., 2007, 32(8/9): 991-1007.

[7] Collins A M, Skaer N J V, Gheysens T, et al. Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications. Adv. Mater., 2009, 21(1): 75-78.

[8] Meinel L, Karageorgiou V, Hofmann S, et al. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J. Biomed. Mater. Res., 2004, 7lA(1): 25-34.

[9] Nemoto R, Nakamura S, Isobe T, et al. Direct synthesis of hydroxyapatite-silk fibroin nano-composite sol via a mechanochemical route. J. Sol Gel Sci. Tech., 2001, 21(1/2): 7-12.

[10] Kong X D, Cui F Z, Wang X M, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. J. Cryst. Growth, 2004, 270(1/2): 197-202.

[11] Kong X D, Sun X D, Cui F Z, et al. Effect of solute concentration on fibroin regulated biomineralization of calcium phosphate. Mater. Sci. Eng., C, 2006, 26(4): 639-643.

[12] 刘 琳, 孔祥东, 蔡玉荣, 等(LIU Lin, et al.) 纳米羟基磷灰石/丝素蛋白复合支架材料的降解特性及生物相容性研究. 化学学报(Acta Chim Sinica), 2008, 66(16): 1919-1923.

[13] 杨 辉, 张 林, 张 宏, 等. 丝素蛋白/羟基磷灰石复合材料的制备及性能表征. 复合材料学报, 2007, 24(3): 141-146.

[14] 刘佳佳, 李明忠, 卢神州. 羟基磷灰石/丝素蛋白复合材料的制备. 高分子材料科学与工程, 2006, 22(5): 246-248.

[15] Furuzono T, Taguchi T, Kishida A, et al. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J. Biomed. Mater. Res., 2000, 50(3): 344-352.

[16] 陈宇岳, 盛家墉, 胡凤霞, 等. 真丝纤维在钙盐作用下的形态结构研究. 纺织学报, 1999, 20(3): 12-14.

[17] Miyaguchi Y J, Hu J. Physicochemical properties of silk fibroin after solubilization using calcium chloride with or without ethanol. Food Sci. Technol. Res., 2005, 11(1): 37-42.

[18] Qian J, Liu Y, Liu H, et al. An amperometric new methylene blue N-mediating sensor for hydrogen peroxide based on regenerated silk fibroin as an immobilization matrix for peroxidase. Anal. Biochem., 1996, 236(2): 208-214.

[19] Wilson D, Valuzzi R, Kaplan D. Conformational transitions in model silk peptides. Biophys. J., 2000, 78(5): 2690-2701.

[20] 周 文, 陈 新, 邵正中. 红外和拉曼光谱用于对丝蛋白构象的研究. 化学进展, 2006, 11(18): 1514-1522.

[21] 王 江, 左 奕, 杨维虎, 等(WANG Jiang, et al). 纳米羟基磷灰石-丝素蛋白仿生矿化材料的制备研究. 无机材料学报(Journal of Inorganic Materials). 2009, 22(2): 264-268.

[22] Tsukada M, Goto Y, Freddi G, et al. Chemical modification of silk with itaconic anhydride. J. Appl. Polym. Sci., 1992, 45(10): 1719-1725.

[23] Tanahashi M, Matsuda T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J. Biomed. Mater. Res., 1997, 34(3): 305-315.

[24] 姚菊明, 魏克民, 励 丽, 等(YAO Ju-Min, et al). 桑蚕丝素蛋白初始结构对其矿化作用的影响. 化学学报(Acta Chim Sinica). 2007, 65(7): 635-639.

[25] Wang L, Nemoto R, Senna M. Microstructure and chemical states of hydroxyapatite/silk fibroin nanocomposites synthesized via a wet-mechanochemical route. J. Nanopart. Res., 2002, 4(6): 535-540.

[26] Mathur A B, Tonelli A, Rathke T, et al. The dissolution and characterization of Bombyx mori silk fibroin in the calcium nitrate- methanol solution and the regeneration of films. Biopolymers, 1997, 42(1): 61-74.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%