欢迎登录材料期刊网

材料期刊网

高级检索

采用等离子喷涂技术制备了5wt% CNTs/Al2O3-TiO2复合涂层, 借助SEM、热红联仪和RAM反射率测试系统对CNTs/ Al2O3-TiO2复合涂层的组织结构、高温氧化性能、电磁特性进行了分析. 结果表明:CNTs/Al2O3-TiO2复合涂层的组织结构致密、孔隙率低, CNTs分散均匀, 碳纳米管与Al2O3-TiO2陶瓷粘结剂之间具有良好的界面相容性. 在20~700℃高温氧化过程中, CNTs起始失重温度为471.29℃, CNTs/Al2O3-TiO2复合涂层的高温氧化性能有一定提高, 起始失重温度从471.29℃提高到507.8℃, 而碳纳米管的失重率从100%下降到33.68%. CNTs/Al2O3-TiO2复合涂层具有较好的高温吸波性能, 25℃时复合涂层的反射率峰值为-7.86dB. 随温度的升高, CNTs/Al2O3-TiO2复合涂层的反射率峰值不断减小, 谐振频率向低频移动, 300℃时复合涂层的反射率峰值为-12.88dB, 小于-5dB频带宽为4.48GHz.

5wt% CNTs/Al2O3-TiO2 coatings were prepared by micro-plasmaspraying. Microstructure and high temperature properties of CNTs/Al2O3-TiO2 composite coatings were studied. Its microstructure was dense and the porosity was low. CNTs were dispersed uniformly in CNTs/Al2O3-TiO2 composite coating. In the thermal oxidation processfrom 20℃ to 700℃, the initial weight loss temperature of CNTs was 471.29℃. Theinitial weight loss temperature of CNTs/Al2O3-TiO2 composite coating was raised to 507.8℃. The plasma heating process improved the graphite phase transformation of CNTs,which was helpful for the improvement of initial weight loss temperature of CNTs/Al2O3-TiO2 composite coating. When CNTs/Al2O3-TiO2 composite coating was heated to 300℃, and the high temperature reflectivity was measured at 2-18 GHz, the minimum reflection losswas -7.86 dB at 25 ℃. With increasing temperature, the reflectivity peak continuously decreased and the resonant frequency moved to the low frequency. The experimental reflectivity peak was -12.88dB, and the frequency band width for less than -5dB was 4.48 GHz at 300℃. There sults suggests that CNTs/Al2O3-TiO2 coating is agood candidate for high-temperature microwave-absorbing material.

参考文献

[1] Li N, Huang Y, Du F, et al. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett., 2006,6(6):1141-1145.
[2] Larry L, Sajjad H, Dario P, et al. Size and mobility of excitons in(6,5) carbon nanotubes. Nature Physics,2009,5(1):54-58.
[3] Leroy B J, Lemay S G, Kong J,et al. Electrical generation andabsorption of phonons in carbon nanotubes. Nature,2004,432(7015):371-374.
[4] Alexander A G, Mark C H. Processing andproperties of highly enriched double-wall carbon nanotubes. Nature Nanotechnology, 2009,4(1):64-70.
[5] Yonglai Y, Mool C G, Kenneth L D. Novelcarbon nanotube polystyrene foam composites for electromagnetic interference shielding. Nano Lett., 2005,5(11):2131-2134.
[6] Lee S E, Kang J H, Kim C G. Fabrication and design of multi-
layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos. Struct., 2006,76(4):397-405.
[7] Fan Z J, Luo G H, Zhang Z F, et al. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/ polymer composites. Materials Science and Engineering B, 2006, 132(1/2):85-89.
[8] Liu Z F, Bai G, Huang Y, et al. Microwave absorption of single- walled carbon nanotubes/soluble cross-Linked polyurethane composites. J. Phys. Chem. C, 2007,111 (37):13696-13700.
[9] 华绍春, 王汉功, 汪刘应, 等(HUA Shao-Chun, et al). 微弧等离子喷涂AT13纳米涂层的工艺优化. 无机材料学报(Journal of Inorganic Materials), 2007,22(3):560-564.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%