欢迎登录材料期刊网

材料期刊网

高级检索

为了研究碳包覆对LiFePO4结构的影响,以柠檬酸为碳源, 采用机械活化-高温固相法, 合成了不同碳包覆量的LiFePO4/C复合正极材料. 通过XRD、SEM、BET、HRTEM、选区电子衍射(SAED)、交流阻抗谱(ACI)和恒电流充放电等现代分析方法, 全面研究了碳包覆量不同时,LiFePO4/C复合正极材料的结构、形貌和电化学性能, 并对C包覆对结构影响的成因进行了分析.结果表明, 柠檬酸高温分解后生成无定形碳非晶物质,在LiFePO4颗粒表面包覆形成一种网络结构,抑制了颗粒的生长; C包覆影响了晶体的生长方向和微观结构,LiFePO4/C的优势生长为方向; 交流阻抗分析表明包覆后锂离子扩散系数比未改性的LiFePO4提高了两个数量级,且各项阻抗值均降低, 从而提高了材料的离子及电子电导性、放电性能和循环性能. "

LiFePO4/Ccomposite cathode materials containing different amounts of carbon were fabricated by mechanical activation–high temperature solid statereaction using citric acid as a carbon source, with the aim to study the effectof carbon-coating on LiFePO4 internal structure. The crystal structure, surface morphology and electrochemical properties of the obtained composites coated with various carbon contents were investigated by the techniques of XRD, SEM, BET, HRTEM, SAED, AC Impedance spectra, and constant current charge-discharge testing. And the structural changes originating from the carbon-coatingwere also analyzed. Under high temperature, citric acid was decomposed into network-like structure amorphous carbon, and coated on the surface of LiFePO4 particles, which could inhibit the grain growth and cause the smaller sizes.The crystal growth direction and micro-structure of LiFePO4/C were significantly influenced by carbon-coating that resulted in growing along direction preferentially.According to AC Impedance spectra measurements, all the impedances of carboncoated LiFePO4 decreased evidently, and the diffusion coefficient of Li ions increased by up to two orders of magnitude compared with uncoated LiFePO4, indicating the ion and electric conductivity,discharge capacity and cycling performance were greatly improved.

参考文献

[1] ADDIN EN.REFLIST Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho- olivinesas positive-electrode materials for rechargeable lithium batteries.Journal of the Electrochemical Society, 1997,144(4):1188-1194.
[2] Chen G Y, Song X Y, Richardson T J. Electron microscopy study of the LiFePO4 to FePO4 phase Transition. Electrochemical and Solid-State Letters, 2006,9(6):A295-A298.
[3] Kim D H, Kim T R, Im J S, et al. A new method to synthesize olivine phosphate nanoparticles. Physica Scripta, 2007,T129:31-34.
[4] 张培新, 文衍宣, 刘剑洪, 等(ZHANG Pei-Xin, et al). 化学沉淀法制备掺杂磷酸铁锂的结构和性能研究. 稀有金属材料与工程(Rare Met al Mat. Eng.), 2007,36(6):954-958.
[5] 卢俊彪, 唐子龙, 张中太, 等(LU Jun-Biao, et al). LiFePO4材料的制备与电池性能的研究. 无机材料学报(Journalof Inorganic Materials), 2005,20(3):666-670.
[6] Kim J K, Choi J W, Cheruvally G , et al. A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries. Materials Letters, 2007,61(18):3822-3825.
[7] Dominko R, Bele M, Gaberscek M, et al. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C compostites.Journalof the Electrochemical Society, 2005,152(3): A607-A610.
[8] Chung S Y, Blocking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes.Nature Materials, 2002,1:123-128.
[9] 陈 宇, 王忠丽, 于春洋, 等(CHEN Yu, et al). 掺杂Mo的LiFePO4正极材料的电化学性能. 物理化学学报(ActaPhys-Chem. Sin.), 2008,24(8):1498-1502.
[10] Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid State Lett., 2001,4(10):A170-A172.
[11] 张淑萍, 倪江锋, 周恒辉, 等(ZHANG Shu-Ping, et al). 溶剂热法控制合成规则的LiFePO4 颗粒. 物理化学学报(ActaPhys-Chem. Sin.), 2007,23(6):830-834.
[12] 林木崇. 锂离子电池正极材料LiFePO4的掺杂缺陷及电化学性能的研究. 深圳: 深圳大学硕士论文, 2010.
[13]Liu H, Cao Q, Fu L J,et al. Doping effects of zinc on LiFePO4cathode material for lithium ion batteries. Electrochemistry Communications, 2006,8(10):1553-1557.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%