欢迎登录材料期刊网

材料期刊网

高级检索

TiO2 光催化复合分离膜是近几年出现的一种集光催化和膜分离作用于一体的新型多功能复合膜, 多用于水处理中. 将光催化剂 TiO2 负载于膜表面或者内嵌于膜中, 制备成光催化复合分离膜, 不仅解决了 TiO2 的回收问题, 且能在一定程度上缓解或者消除膜污染问题; 在发挥光催化和膜分离作用的同时, 还能产生一系列的协同作用, 以加强污染物的处理效果. 本文综述了光催化复合分离膜的作用机理和类型, 重点评述了目前复合膜的制备方法, 并对其性质及应用做一总结, 最后针对复合膜目前存在的问题对其今后的发展方向提出展望.

TiO2 photocatalytic separation membrane is a kind of novel multifunctional composite membrane integrating photocatalysis and separation technologies for water treatment. TiO2 photocatalyst is loaded on the membrane surface or entrapped in the membrane to obtain the composite membrane that makes the TiO2 recovery problem solved. More significantly, the membrane is efficient to maintain high flux of membranes as the presence of TiO2 photocatalyst can reduce the membrane fouling problem which is a hindrance in the development of membrane process. Moreover, some synergistic effects can also be produced, and thus the efficiency of water treatment is enhanced greatly. A comprehensive review of TiO2 photocatalytic separation membrane is conducted with an insight into its types, preparation methods, properties, and its application. In view of the existing problems, the prospects for future development of TiO2 photocatalytic separation membrane are also proposed.

参考文献

[1] Meng F G, Meng S R, Chae A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res. , 2009, 43(6): 1489 - 1512.
[2] Yu H Y, Xie Y J, Hu M X, et al. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment. J. Membr. Sci. , 2005, 254(1/2): 219 - 227.
[3] Susanto H, Feng Y, Ulbricht M. Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J. Food Eng. , 2009, 91(2): 333 - 340.
[4] Mo H, Tay K G, Ng H Y. Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature. J. Membr. Sci. , 2008, 315(1/2): 28 - 35.
[5] Jermann D, Pronk W, Boller M. Mutual influences between natural organic matter and inorganic particles and their combined effect on ultrafiltration membrane fouling. Environ. Sci. Technol. , 2008, 42(24): 9129 - 9136.
[6] Liang S, Zhao Y, Liu C, et al. Effect of solution chemistry on the fouling potential of dissolved organic matter in membrane bioreactor systems. J. Membr. Sci. , 2008, 310(1/2): 503 - 511.
[7] Liu C X, Zhang D R, He Y, et al. Modification of membrane surface for anti-biofouling performance: effect of anti-adhesion and anti-bacteria approaches. J. Membr. Sci. , 2010, 346(1/2): 121 - 130.
[8] Kim J Y, Chang I S, Park H H, et al. New configuration of a membrane bioreactor for effective control of membrane fouling and nutrients removal in wastewater treatment. Desalination, 2008, 230(1/2/3): 153 - 161.
[9] Porcelli N, Judd S. Chemical cleaning of potable water membranes: A review. Sep. Purif. Technol. , 2010, 71(2): 137 - 143.
[10] Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. J. Membr. Sci. , 2010, 348(1/2): 337 - 345.
[11] Herrmann J M, Duchamp C, Karkmaz M, et al. Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. , 2007, 146(3): 624 - 629.
[12] Chong M N, Jin B, Chow C W K, et al. Recent developments in photocatalytic water treatment technology: a review. Water Res. , 2010, 44(10): 2997 - 3027.
[13] Fujishima A, Zhang X T. Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chim. , 2006, 9(5/6): 750 - 760.
[14] Augugliaro V, Litter M, Palmisano L, et al. The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J. Photochem. Photobiol. C, 2006, 7(4): 127 - 144.
[15] Pelton R, Geng X, Brook M. Photocatalytic paper from colloidal TiO2-fact of fantasy, Adv. Colloid Interface Sci. , 2006, 127(1): 42 - 53.
[16] Tryba B. Immobilization of TiO2 and Fe-C-TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. J. Hazard. Mater. , 2008, 151(2/3): 623 - 627.
[17] Wang C X, Yin L W, Zhang L Y, et al. Magnetic (gamma- Fe2O3@SiO2)(n)@TiO2 functional hybrid nanoparticles with actived photocatalytic ability. J. Phys. Chem. C, 2009, 113(10): 4008 - 4011.
[18] Li H S, Zhang Y P, Wang S Y, et al. Study on nanomagnets supported TiO2 photocatalysts prepared by a Sol–Gel process in reverse microemulsion combining with solvent-thermal technique. J. Hazard. Mater. , 2009, 169(1/2/3): 1045 - 1053.
[19] Li X Z, Liu H. Photocatalytic oxidation using a new catalyst-TiO2 microsphere-for water and wastewater treatment. Environ. Sci. Technol. , 2003, 37(17): 3989 - 3994.
[20] Xu J H, Dai W L, Li J, et al. Novel core-shell structured mesoporous titania microspheres: preparation, characterization and excellent photocatalytic activity in phenol abatement. J. Photochem. Photobiol. A, 2008, 195(2/3): 284 - 294.
[21] Zhao X, Liu M H, Zhu Y F. Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films, 2007, 515(18): 7127 - 7134.
[22] Xiao Y T, Xu S S, Li Z H, et al. Progress of applied research on TiO2 photocatalysis-membrane separation coupling technology in water and wastewater treatments. Chin. Sci. Bull. , 2010, 55(14): 1345 - 1353.
[23] Mozia S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. Sep. Purif. Technol. , 2010, 73(2): 71 - 91.
[24] Molinari R, Palmisano L, Drioli E, et al. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J. Membr. Sci. , 2002, 206(1/2): 399 - 415.
[25] Madaeni S S, Ghaemi N. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J. Membr. Sci. , 2007, 303(1/2): 221 - 233.
[26] Tsuru T, Kan-no T, Yoshioka T, et al. A photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes. Catal. Today, 2003, 82(1-4): 41 - 48.
[27] Syafei A D, Lin C F, Wu C H. Removal of natural organic matter by ultra?ltration with TiO2-coated membrane under UV irradiation. J. Colloid Interface Sci. , 2008, 323(1): 112 - 119.
[28] H Choi, E Stathatos, Dionysiou D D. Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination, 2007, 202(1/2/3 ): 199 - 206.
[29] Zhang H M, Quan X, Chen S, et al. Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability. Environ. Sci. Technol. , 2006, 40(19): 6104 - 6109.
[30] Bae T H, Tak T M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. , 2005, 249(1/2): 1 - 8.
[31] Kim S H, Kwak S Y, Sohn B H, et al. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Membr. Sci. , 2003, 211(1): 157 - 165.
[32] Yang Y N, Wang P. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process. Polymer, 2006, 47(8): 2683 - 2688.
[33] Damodar R A, You S J, Chou H H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. , 2009, 172(2/3): 1321 - 1328.
[34] Xu Z L, Yu L Y, Han L F. Polymer-nanoinorganic particles composite membranes: a brief overview. Front. Chem. Eng. Chin. , 2009, 3(3): 318 - 329.
[35] Loddo V, Augugliaro V, Palmisano L. Photocatalytic membrane reactors: case studies and perspectives. Asia-Pac. J. Chem. Eng. , 2009, 4(3): 380 - 384.
[36] J Kim, Bruggen B V D. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. , 2010, 158(7): 2335 - 2349.
[37] Wang R C, Ren D J, Xia S Q, et al. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J. Hazard. Mater. , 2009, 169(1/2/3): 926 - 932.
[38] Gumy D, Rincon A G, Hajdu R, et al. Solar photocatalysis for detoxi?cation and disinfection of water: different types of suspended and ?xed TiO2 catalysts study. Sol. Energy, 2006, 80(10): 1376 - 1381.
[39] Ollis D F. Integrating photocatalysis and membrane technologies for water treatment. Ann. N. Y. Acad. Sci. , 2003, 984: 65 - 84.
[40] Molinari R, Pirillo F, Loddo V, et al. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal. Today, 2006, 118(1/2): 205 - 213.
[41] Oh S J, Kim N, Lee Y T. Preparation and characterization of PVDF/TiO2 organic–inorganic compositemembranes for fouling resistance improvement. J. Membr. Sci. , 2009, 345(1/2): 13 - 20.
[42] Li J H, Xu Y Y, Zhu L P, et al. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Membr. Sci. , 2009, 326(2): 659 - 666.
[43] Luo M L, Zhao J Q, Tang W, et al. Hydrophilic modi?cation of poly(ether sulfone) ultra?ltration membrane surface by self-assembly of TiO2 nanoparticles. Appl. Surf. Sci. , 2005, 249(1-4): 76 - 84.
[44] Zhang H M, Quan X, Chen S, et al. Fabrication of photocatalytic membrane and evaluation its ef?ciency in removal of organic pollutants from water. Sep. Purif. Technol. , 2006, 50(2): 147 - 155.
[45] Ma N, Quan X, Zhang Y B, et al. Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification. J. Membr. Sci. , 2009, 335(1/2): 58 - 67.
[46] Ma N, Fan X F, Quan X, et al. Ag-TiO2/HAP/Al2O3 bioceramic composite membrane: Fabrication, characterization and bactericidal activity. J. Membr. Sci. , 2009, 336(1/2): 109 - 117.
[47] Artale M A, Augugliaro V, Drioli E, et al. Preparation and characterisation of membranes with entrapped TiO2 and preliminary photocatalytic tests. Ann. Chim. , 2001, 91(3/4): 127 -1 36.
[48] Ciston S, Lueptow R M, Gray K A. Controlling bio?lm growth using reactive ceramic ultra?ltration membranes. J. Membr. Sci. , 2009, 342(1/2): 263 - 268.
[49] Rahimpour A, Madaeni S S, Taheri A, et al. Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Membr. Sci. , 2008, 313(1/2): 158 - 169.
[50] Zhang X W, Du A J, Lee P, et al. TiO2 nanowire membrane for concurrent ?ltration and photocatalytic oxidation of humic acid in water. J. Membr. Sci. , 2008, 313 (1/2): 44 - 51.
[51] Molinari R, Mungari M, Drioli E, et al. Study on a photocatalytic membrane reactor for water purification. Catal. Today, 2000, 55(1/2): 71 - 78.
[52] Dong W, Cogbill A, Zhang T, et al. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices. J. Phys. Chem. B, 2006, 110(34): 16819 - 16822.
[53] Shang L, Li B J, Dong W J, et al. Heteronanostructure of Ag particle on titanate nanowire membrane with enhanced photocatalytic properties and bactericidal activities. J. Hazard. Mater. , 2010, 178(1/2/3): 1109 - 1114.
[54] China S S, Chiang K, Fane A G. The stability of polymeric membranes in a TiO2 photocatalysis process. J. Membr. Sci. , 2006, 275(2): 202 - 211.
[55] Ciston S, Lueptow R M, Gray K A. Bacterial attachment on reactive ceramic ultra?ltration membranes. J. Membr. Sci. , 2008, 320(1/2): 101 - 107.
[56] Lee H S, Im S J, Kim J H, et al. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 2008, 219(1/2/3): 48 - 56.
[57] Mansourpanah Y, Madaeni S S, Rahimpour A, et al. Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling-resistant capability. J. Membr. Sci. , 2009, 330(1/2): 297 - 306.
[58] Yang Y N, Zhang H X, Wang P, et al. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J. Membr. Sci. , 2007, 288(1/2): 231 - 238.
[59] Alem A, Sarpoolaky H, Keshmiri M. Titania ultrafiltration membrane: preparation, characterization and photocatalytic activity. J. Eur. Ceram. Soc. , 2009, 29(4): 629 - 635.
[60] Kwak S Y, Kim S H, Kim S S. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol. , 2001, 35(11): 2388 - 2394.
[61] W u G P, Gan S Y, Cui L Z, et al. Preparation and characterization of PES/TiO2 composite membranes. Appl. Surf. Sci. , 2008, 254(21): 7080 - 7086.
[62] Zhang Q, Fan Y Q, Xu N P. Effect of the surface properties on ?ltration performance of Al2O3–TiO2 composite membrane. Sep. Purif. Technol. , 2009, 66(2): 306 - 312.
[63] Bae T H, Tak T M. Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. J. Membr. Sci. , 2005, 266(1/2): 1 - 5.
[64] Bae T H, Kim I C, Tak T M. Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J. Membr. Sci. , 2006, 275(1/2): 1 - 5.
[65] Zhang X W, Du A J, Lee P, et al. Grafted multifunctional titanium dioxide nanotube membrane: separation and photodegradation of aquatic pollutant. Appl. Catal. , B, 2008, 84(1/2): 262 - 267.
[66] Yamashita H, Nakao H, Takeuchi M, et al. Coating of TiO2 photocatalysts on super-hydrophobic porous te?on membrane by an ion assisted deposition method and their self-cleaning performance. Nucl. Instrum. Methods Phys. Res. , Sect. B, 2003, 206: 898 - 901.
[67] Rizzoa L, Kochb J, Belgiornoa V, et al. Removal of methylene blue in a photocatalytic reactor using polymethylmethacrylate supported TiO2 nanofilm. Desalination, 2007, 211(1/2/3): 1 - 9.
[68] Albu S P, Ghicov A, Macak J M, et al. Self-organized, free-standing TiO2 nanotube membrane for ?ow through photocatalytic applications. 2007, Nano Lett. , 7(5): 1286 - 1289.
[69] Choi H, Stathatos E, Dionysi D D. Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl. Catal. , B, 2006, 63(1/2): 60 - 67.
[70] Choi H, Sofranko AC, Dionysiou DD. Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction. Adv. Funct. Mater. , 2006, 16(8): 1067 - 1074.
[71] Kochkodan V, Tsarenko S, Potapchenko N, et al. Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2. Desalination, 2008, 220(1/2/3): 380 - 385.
[72] Kleine J, Peinemann K V, Schuster C, et al. Multifunctional system for treatment of wastewaters from adhesive-producing industries: separation of solids and oxidation of dissolved pollutants using doted micro?ltration membranes. Chem. Eng. Sci. , 2002, 57(9): 1661 - 1664.
[73] Li Q, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. , 2008, 42(18): 4591 - 4602.
[74] Bosc F, Ayral A, Guizard C. Mesoporous anatase coatings for coupling membrane separation and photocatalyzed reactions. J. Membr. Sci. , 2005, 265(1/2): 13 - 19.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%