欢迎登录材料期刊网

材料期刊网

高级检索

采用溶胶-凝胶法制备了SiO2-TiO2-ZrO2复合氧化物. 考察了Si/Ti/Zr摩尔比对样品比表面积、孔结构、酸性和晶体结构的影响, 同时考察了样品的热稳定性; 采用X射线衍射、N2物理吸附、吡啶吸附红外光谱等技术对样品进行了表征; 以二苯并噻吩(DBT)和柴油样品的加氢脱硫为探针反应考察了该复合氧化物作为加氢脱硫催化剂载体的可行性. 结果表明, SiO2-TiO2-ZrO2复合氧化物为介孔材料, 其比表面积和热稳定性明显高于单一及二元复合氧化物; 当nSi/nTi/nZr=0.163/0.809/0.028时, 样品比表面积为315.32m2/g、孔容为0.33cm3/g、孔径为12.0nm; 以此为载体载负MoP催化剂的DBT加氢脱硫率可达99.6%,柴油样品脱硫率达96%;催化剂长周期运行1200小时后h后, 脱硫活性稳定.

The SiO2-TiO2-ZrO2 composite oxide was prepared by Sol-Gel method. The effects ofn(Si)/n(Ti)/n(Zr)on the specific surface area , pore structure, acidity and crystal structure of the composite oxide were examined, and the thermal stability of samples was also characterized .The samples were tested by XRD, nitrogen absorption and infrared spectroscopy of absorbed pyridine. The feasibility of the composite oxide as the support of hydrofining catalyst was investigated by using dibenzothiophene as a model compound through hydrodesulfurization (HDS) reactions. The results indicated that mesoporous particles of the composite oxide were obtained .Compared with single and binary composite oxide, the specific surface area, the thermal stability and crystal stability ofSiO2-TiO2-ZrO2 composite oxide were obviously improved. When n(Si)/n(Ti)/n(Zr) is equal to 0.163/0.809/0.028 , the specific surface is 315.32 m2/g, pore volume is 0.33 cm3/g and the aperture is 12.0 nm. The dibenzothiophene sulfur removal rate for MoP/SiO2-TiO2-ZrO2 is 99.6% and desulfurization of diesel samples is above 96% . And desulfurization activity of catalyst is stability after 1200 h running.

参考文献

[1] 方向晨, 关明华, 廖士刚. 加氢精制. 北京: 中国石化出版社, 2006, : 427 - 436.
[2] Rana M S, Capitaine E M R, Carolina L, et a1. Effect of catalyst preparation and support composition on hydrodesulfurization of dibenzothiophene and Maya crude oil ,. Fuel, 2007, 86(9): 1254 - 1262.
[3] Laniecki M, Ignacik M. Water–gas shift reaction over sulfided molybdenum catalysts supported on TiO2-ZrO2 mixed oxides: support characterization and catalytic activity ,. Catalysis Today, 2006, 116 ( 3 ): 400 - 407.
[4] 巫 辉, 赵 萱, 钱 菁, 等. 石油加氢脱硫催化剂载体的研究, . 武汉理工大学学报, 2006, 28(3): 113 - 115.
[5] Murali D G, Srinivas B N, Rana M S, et a1. Mixed oxide supported hydrodesulfurization catalysts-a review ,. Catalysis Today, 2003, 86(1-4): 45 - 60.
[6] Okamoto Y, Ochiai K, Kawano M. Effects of support on the activity of Co–Mo sulfide model catalysts ,. Applied Catalysis A: General, 2002, 226(1 - / 2): 115 - 127.
[7] Rana M S, Maity S K, Ancheyta J, et al. TiO2-SiO2 supported hydrotreating catalysts: physico-chemical characterization and activities ,. Applied Catalysis A: General, 2003, 253 ( 1 ): 165 - 176.
[8] 姜 东, 徐 耀, 侯 博, 等 (JIANG Dong, et al). SiO2-TiO2 催化剂的制备及其光催化性能. 无机材料学报 (Journal of Inorganic Materials), 2008, 23(5): 1080 - 1084.
[9] 喻 瑶, 林 涛, 张丽娟, 等 (YU Yao, et al), . 锆钛复合氧化物的制备及用作 Pt 三效催化剂载体的性能. 无机材料学报 (Journal of Inorganic Materials), 2008, 23(1): 71 - 76.
[10] Kaluza L D, Gulkova Z. Effect of support type on the magnitude of synergism and promotion in CoMo sulphide hydrodesulphurisation catalyst, . Applied Catalysis A: General, 2007, 324: 30 - 35.
[11] Barrera M C, Viniegra M, Escobar J. Highly active MoS2 on wide-pore ZrO2–TiO2 mixed oxides ,. Catalysis Today, 2004, 98(1 - / 2): 131 - 139.
[12] 周亚松, 范小虎 (ZHOU Ya-Song, et al FAN Xiao-hu ). 纳米 TiO2-SiO2 复合氧化物的制备与性质. 高等学校化学学报 (Chemical Research in Chinese Universitys), 2 0 0 3, 24(7): 1266 - 1270.
[13] 李丽娜, 王海彦, 魏 民, 等. MoP/ TiO2-ZrO2 加氢脱硫催化剂的研制. 石油炼制与化工, 2 0 08, 39(2): 16 - 20.
[14] 刘百军, 郑宇印, 孟庆民, 等. TiO2-Al2O3 复合氧化物负载 NiMo 加氢脱硫催化剂的研究. 分子催化, 2 0 04, 18(6): 447 - 451.
[15] 李云雁, 胡传荣. 试验设计与数据处理. 北京: 化学工业出版社, 2005: 237.
[16] 沈本贤, 程丽华, 王海彦, 等. 石油炼制工艺学. 北京: 中国石化出版社, 2009: 86.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%