欢迎登录材料期刊网

材料期刊网

高级检索

采用电沉积方法在SnO2玻璃基底上制备了Co-Se化合物薄膜. 研究了薄膜形成的电化学机理和电沉积工艺对薄膜组成与形貌的影响, 并表征了薄膜的结构与光学性质. 结果表明:Co2+受预沉积Se的表面诱导还原或直接与H2SeO3的六电子还原反应产物H2Se发生反应形成Co-Se化合物; 沉积电位、沉积温度和pH值均显著影响电沉积Co-Se化合物薄膜的形貌与成分; 在沉积电位为-0.5V(<>vsSCE)、沉积温度为50℃和pH值为2.0时可制备出表面致密平整且呈六方晶型结构的富硒CoSe薄膜, 其光吸收系数达到1×105cm-1,直接带隙宽度为(1.53±0.01)eV,接近单结太阳电池光吸收层材料的理论最佳值.

Cobalt selenide thin films were prepared onto tin oxide-coated glass substrates by electrodeposition method. The electrochemical mechanisms for this thin film formation were investigated by cyclic voltammetry (CV), and the results show that cobalt selenide compound phases are formed via either surface induced reduction by predeposited selenium or directly reaction with H2Se from six electron reduction of H2SeO3. It is also found that films’ stoichiometry and morphology are significantly influenced by deposition potential, deposition temperature and pH value. Se-rich CoSe thin films with hexagonal crystal structure and compact morphology can be obtained at deposition potential of - 0.5V ( vs SCE), deposition temperature of 50 ℃ and pH value of 2.0. The electrodeposited CoSe film shows an optical absorption coefficient of higher than 1 × 105 cm - 1 , and an optical band gap of (1.53±0.01) eV which is close to the theoretical optimization value of the light absorption layer materials in single-junction solar cell.

参考文献

[1] Sheldrick W S, Wachhold M. Solventothermal synthesis of solid- state chalcogenidometalates. Angew. Chem. Int. Ed. , 1997, 36(3): 206 - 224.
[2] Tremel W, Kleinke H, Derstroff V, et al. Transition metal chalcogenides new views on an old topic. J. Alloys Compd. , 1995, 219(1/2): 73 - 82.
[3] Pawar S M, Moholkar A V, Suryavanshi U B, et al. Electrosynthesis and characterization of iron selenide thin films. Sol. Energy Mater. Sol. Cells, 2007, 91(7): 560 - 565
[4] Dharmadasa I M, Samantilleke A P, Young J, et al. Electrodeposited p-type and n-type ZnSe layers for light emitting devices and multi-layer tandem solar cells. J. Mater. Sci. Mater. Electron. , 1999, 10(5/6): 441 - 445.
[5] Feng Y J, He T, Alonso-Vante N. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium. Electrochim. Acta, 2009, 54(22): 5252 - 5256.
[6] Kashida S, Akai J. X-ray diffraction and electron microscopy studies of the room-temperature structure of Cu2Se. J. Phys. C: Sol. State Phys. , 1988, 21(31): 5329 - 5336.
[7] Takemura Y, Suto H, Honda N, et al. Characterization of FeSe thin films prepared on GaAs substrate by selenization technique. J. Appl. Phys. , 1997, 81(8): 5177 - 5179.
[8] Wu X J, Zhang Z Z, Zhang J Y, et al. Structural and electrical characterizations of single tetragonal FeSe on Si substrate. J. Cryst. Growth, 2007, 300(2): 483 - 485.
[9] Hamdadou N, Bernede J C, Khelil A. Preparation of iron selenide films by selenization technique. J. Cryst. Growth, 2002, 241(3): 313 - 319.
[10] Hankare P P, Jadhav B V, Garadkar K M, et al. Synthesis and characterization of nickel selenide thin films deposited by chemical method. J. Alloys Compd. , 2010, 490(1/2): 228 - 231.
[11] Zainal Z, Saravanan N, Mien H L. Electrodeposition of nickel selenide thin films in the presence of triethanolamine as a complexing agent. J. Mater. Sci. Mater. Electron. , 2005, 16(2): 111 - 117.
[12] 陈 异, 高 濂 (CHEN Yi, et al). 胶体法制备 CdSe 纳米晶. 无机材料学报 (Journal of Inorganic Materials), 2002, 17(6): 1289 - 1291.
[13] Bhattacharya R N, Fernandez A M. CuIn1?xGaxSe2-based photovoltaic cells from electrodeposited precursor films. Sol. Energy Mater. Sol. Cells, 2003, 76(3): 331 - 337.
[14] Thanikaikarasan S, Mahalingam T, Sundaram K, et al. Growth and characterization of electrosynthesized iron selenide thin films. Vacuum, 2009, 83(7): 1066 - 1072.
[15] Kowalik R, Zabinski P, Fitzner K. Electrodeposition of ZnSe. Electrochim. Acta, 2008, 53(21): 6184 - 6190.
[16] Thouin L, Rouquette-Sanchez S, Vedel J. Electrodeposition of copper-selenium binaries in a citric acid medium. Electrochim. Acta, 1993, 38(16): 2387 - 2394.
[17] Gomez E, Pollina R, Valles E. Nickel electrodeposition on different metallic substrates. J. Electroanal. Chem. , 1995, 386(1/2): 45 - 56.
[18] Orinakova R, Streckova M, Trnkova L, et al. Comparison of chloride and sulphate electrolytes in nickel electrodeposition on a paraffin impregnated graphite electrode. J. Electroanal. Chem. , 2006, 594(2): 152 - 159.
[19] Abd El Rehim S S, Ibrahim M A M, Dankeria M M. Electrodeposition of cobalt from gluconate electrolyte. J. Appl. Electrochem. , 2002, 32(9): 1019 - 1027.
[20] Soto A B, Arce E M, Palomar-Pardave M, et al. Electrochemical nucleation of cobalt onto glassy carbon electrode from ammonium chloride solutions. Electrochim. Acta, 1996, 41(16): 2647 - 2655.
[21] Palomar-Pardave M, Gonzalez I, Soto A B, et al. Influence of the coordination sphere on the mechanism of cobalt nucleation onto glassy carbon. J. Electroanal. Chem. , 1998, 443(1): 125 - 136.
[22] Grujicic D, Pesic B. Electrochemical and AFM study of cobalt nucleation mechanisms on glassy carbon from ammonium sulfate solutions. Electrochim. Acta, 2004, 49(26): 4719 - 4732.
[23] Mendoza-Huizar L H, Robles J, Palomar-Pardave M. Theoretical and experimental study of cobalt nucleation and growth onto gold substrate with different crystallinity. J. Electrochem. Soc. , 2005, 152(5): C265 - C271.
[24] Rios-Reyes C H, Mendoza-Huizar L H, Rivera M. Electrochemical kinetic study about cobalt electrodeposition onto GCE and HOPG substrates from sulfate sodium solutions. J. Solid State Electrochem. , 2010, 14(4): 659 - 668.
[25] Palomar-Pardave M, Scharifker B R, Arce E M, et al. Nucleation and diffusion-controlled growth of electroactive centers: reduction of protons during cobalt electrodeposition. Electrochim. Acta, 2005, 50(24): 4736 - 4745.
[26] Andrews R W, Johnson D C. Voltammetric deposition and stripping of selenium(IV) at a rotating gold-disk electrode in 0. 1mol/L perchloric acid. Anal. Chem. , 1975, 47(2): 294 - 299.
[27] Wei C, Myung N, Rajeshwar K. A combined voltammetry and electrochemical quartz crystal microgravimetry study of the reduction of aqueous Se(IV) at gold. J. Electroanal. Chem. , 1994, 375(1/2): 109 - 115.
[28] Huang B M, Lister T E, Stickney J L. Se adlattices formed on Au(100), studies by LEED, AES, STM and electrochemistry. Surf. Sci. , 1997, 392: 27 - 43.
[29] Alanyalioglu M, Demir U, Shannon C. Electrochemical formation of Se atomic layers on Au(111) surfaces: the role of adsorbed selenate and selenite. J. Electroanal. Chem. , 2004, 561: 21 - 27.
[30] Santos M C, Machado S A S. Microgravimetric, rotating ring-disc and voltammetric studies of the underpotential deposition of selenium on polycrystalline platinum electrodes. J. Electroanal. Chem. , 2004, 567(2): 203 - 210.
[31] Sorenson T A, Lister T E, Huang B M, et al. A comparison of atomic layers formed by electrodeposition of selenium and tellurium scanning tunneling microscopy studies on Au(100) and Au(111). J. Electrochem. Soc. , 1999, 146(3): 1019 - 1027.
[32] Kemell M, Saloniemi H, Ritala M, et al. Electrochemical quartz crystal microbalance study of the electrodeposition mechanisms of Cu2?xSe thin films. Electrochim. Acta, 2000, 45(22/23): 3737 - 3748.
[33] Lai Y Q, Liu F Y, Li J, et al. Nucleation and growth of selenium electrodeposition onto tin oxide electrode. J. Electroanal. Chem. , 2010, 639(1/2): 187 - 192.
[34] Kroger F A. Cathodic deposition and characterization of metallic or semiconducting binary alloys or compounds. J. Electrochem. Soc. , 1978, 125(12): 2028 - 2034.
[35] Rajeshwar K. Electrosynthesized thin films of group II-VI compound semiconductors, alloys and superstructures. Adv. Mater. , 1992, 4(1): 23 - 29.
[36] Saloniemi H, Kanniainen T, Ritala M, et al. Electrodeposition of lead selenide thin films. J. Mater. Chem. , 1998, 8(3): 651 - 654.
[37] Frari D D, Diliberto S, Stein N, et al. Comparative study of the electrochemical preparation of Bi2Te3, Sb2Te3, and (BixSb1?x)2Te3 films. Thin Solid Films, 2005, 483(1/2): 44 - 49.
[38] Kemmell M, Ritala M, Saloniemi H, et al. One-step electrodeposition of Cu2–xSe and CuInSe2 thin films by the induced Co-deposition mechanism. J. Electrochem. Soc. , 2000, 147(3): 1080 - 1087.
[39] Paunovic M, Schlesinger M. Fundamentals of Electrochemical Deposition, 2nd edition. Hoboken: John Wiley & Sons, Inc. , 1998: 25 - 41.
[40] Solaliendres M O, Manzoli A, Salazar-Banda G R, et al. The processes involved in the Se electrodeposition and dissolution on Au electrode: the H2Se formation. J. Solid State Electrochem. , 2008, 12(6): 679 - 686.
[41] Lai Y Q, Liu F Y, Zhang Z A, et al. Cyclic voltammetry study of electrodeposition of Cu(In, Ga)Se2 thin films. Electrochim. Acta, 2009, 54(11): 3004 - 3010.
[42] 屠振密. 电镀合金原理与工艺. 北京: 国防工业出版社, 1993: 126 - 128.
[43] Flamini D O, Saidman S B, Bessone J B. Electrodeposition of gallium onto vitreous carbon. J. Appl. Electrochem. , 2007, 37: 467 - 471.
[44] Chandramohan R, Mahalingam T, Chu J P, et al. Preparation and characterization of semiconducting Zn1?xCdxSe thin films. Sol. Energy Mater. Sol. Cells, 2004, 81(3): 371 - 378.
[45] Riha S C, Parkinson B A, Prieto A L. Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J. Am. Chem. Soc. , 2009, 131(34): 12054 - 12055.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%