欢迎登录材料期刊网

材料期刊网

高级检索

以硅粉(Si)为起始原料, 氧化钇(Y2O3)为烧结助剂, 利用干压成型工艺制备出不同气孔率的多孔硅坯体, 通过反应烧结得到高强度多孔氮化硅(Si3N4)陶瓷. 研究了Y2O3添加量在不同升温制度下对于氮化率的影响, 以及1500~1750℃后烧结对多孔材料强度的影响. 结果表明: 添加9%Y2O3的样品具有较高的氮化率, 主要是Y2O3与Si粉表面的SiO2在较低的温度下反应生成了Y5Si3O12N. 在不同的反应条件下可得到气孔率为30%~50%, 强度为160~50MPa的样品. 在1750、 0.5MPaN2气压下对样品进行后处理, α-Si3N4完全转变成柱状β-Si3N4, 晶型转变有利于强度提高,气孔率为46%的多孔Si3N4其强度可达140MPa.

High flexural strength porous silicon nitride ceramics were prepared via nitridation of silicon powder, using silicon powder and Y2O3 as start powder with different forming pressures. The effects of Y2O3 contents and heating programs on nitridation rate were studied. The high nitridation rate was obtained when 9% Y2O3 was added, which was contributed to Y2O3 reacted with SiO2 at low temperature (1200 ℃ ) to transform to Y5Si3O12N and the elimination of SiO2 on Si surface. Under different sintering conditions, the porous Si3N4 ceramics with porosity of 30% - 50% and the flexural strength of 160 - 50MPa were obtained, respectively. After post-sintering at 175 0 ℃ in 0.5MPa N2 atmosphere, α-Si3N4 was fully transformed into β-Si3N4 by the solution-precipitation process, the rod-like β-Si3N4 promoted the flexural strength of the porous Si3N4 ceramics, and the porous Si3N4 ceramics with a porosity of 46% and a flexural strength of 140MPa was obtained .

参考文献

[1] 丁书强. 莫来石结合碳化硅多孔陶瓷的制备与性能研究. 上海: 中国科学院上海硅酸盐研究所博士论文, 2007.
[2] Kawai C, Yamakawa A. Effect of porosity and microstructure on the strength of Si3N4: designed microstructure for high strength, high thermal shock resistance, and facile machining. J. Am. Ceram. Soc. , 1997, 80(10 ): 2705 - 2708.
[3] Yang J, Yang J F, Shan S Y, et al. Effect of sintering additives on microstructure and mechanical properties of porous silicon nitride ceramics. J. Am. Ceram. Soc. , 2006, 89(12 ): 3843 - 3845.
[4] Inagaki Y, Ohji T, Kanzaki S, et al. Fracture energy of an aligned porous silicon nitride. J. Am. Ceram. Soc. , 2000, 83(7): 1807 - 1809.
[5] She J H, Yang J F, Jayaseelan D D, et al. Thermal shock behavior of isotropic and anisotropic porous silicon nitride. J. Am. Ceram. Soc. , 2003, 86(4): 738 - 740.
[6] Fukasawa T, Deng Z Y, AndoM, et al. Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process. J. Am. Ceram. Soc. , 2002, 85(9 ): 2151 - 2155.
[7] Yu Juanli, Wang Hongjie, Zhang Jian, et al. Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers. J. Sol-Gel. Sci. Technol. , 2010, 53(3 ): 515 - 523.
[8] Chen F, Shen Q, Yan F Q, et al. Pressureless sintering of alpha- Si3N4 porous ceramics using a H3PO4 pore-forming agent. J. Am. Ceram. Soc. , 2007, 90 ( 8): 2379 - 2383.
[9] Xia Y F, Zeng Y P, Jiang D L. Dielectric and mechanical properties of porous Si3N4 ceramics prepared via low temperature sintering. Ceram. Int. , 2009, 35(4 ): 1699 - 1703.
[10] Chen F, Shen Q, Yan F Q, et al. Preparation of zirconium pyrophosphate bonded silicon nitride porous ceramics. Mater. Sci. Tech. , 2006, 22(8 ): 915 - 918.
[11] Ding S Q, Zeng Y P, Jiang D L. Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant. Mater. Lett. , 2007, 61(11/12 ): 2277 - 2280.
[12] Yang J F, Shan S Y, Janssen R, et al. Synthesis of fibrous beta-Si3N4 structured porous ceramics using carbothermal nitridation of silica. Acta Mater. , 2005, 53(10): 2981 - 2990.
[13] Shan S Y, Yang J F, Lu Y, et al. Effects of carbon source on microstructural evolution and sintering behavior of porous silicon nitride ceramics. Scrip. Mater. , 2007, 56(3): 193 - 196.
[14] Shan S Y, Yang J F, Gao J Q, et al. Porous silicon nitride ceramics prepared by reduction-nitridation of silica. J. Am. Ceram. Soc. , 2005, 88(9): 2594 - 2596.
[15] Luo M, Gao J Q, Yang J F. Biomorphic silicon nitride ceramics with fibrous morphology prepared by Sol infiltration and reduction-nitridation. J. Am. Ceram. Soc. , 2007, 90(12): 4036 - 4039.
[16] Riley F L. Silicon nitride and related materials. J. Am. Ceram. Soc. , 2000, 83(2 ): 245 - 265.
[17] Atkinson A, Evans A D. Temperature gradients in nitrding silicon powder compacts. Trans. Br. Ceram. Soc. , 1974, 73(2 ): 43 - 46.
[18] Mangels J A. Effect of rate-controlled nitriding and nitrding atompspheres on the formation of reaction-bonded Si3N4. Am. Ceram. Soc. Bul. , 1981, 60(6 ): 613 - 617.
[19] Müllera M, R?gnerb J, Okolo B, et al. Processing of micro- components made of sintered reaction-bonded silicon nitride (SRBSN). Part 2: Sintering behaviour and micro-mechanical properties. Ceram. Int. , 2010, 36( 2 ): 707 - 717.
[20] Coble R L, Kingery W D. Effect of porosity on physical properties of sintered alumina. J. Am. Ceram. Soc. , 1956, 39(11 ): 377 - 385.
[21] Spriggs R M. Expression for effect of porosity on elastic modulus of polycrystalline refractory materials, particularly aluminum oxide. J. Am. Ceram. Soc. , 1961, 44(12 ): 628 - 629.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%