欢迎登录材料期刊网

材料期刊网

高级检索

利用浸渍技术在多孔YSZ中制备了钙钛矿型纳米颗粒材料La0.75Sr0.25Mn0.5Co0.5O3-δ(LSCM), 并以其为敏感电极, YSZ为固体电解质组成了阻抗谱型NO2传感器. 使用XRD和SEM研究了传感器敏感电极的相组成和微观结构. XRD分析结果表明, 经前驱体溶液浸渍和热处理后, 在YSZ多孔层中生成了钙钛矿结构的LSCM. 扫描电镜分析表明敏感电极颗粒粒径为50~100nm, 且与YSZ多孔层结合紧密. 传感器敏感性能实验结果表明, 在温度范围为450~600℃, NO2浓度范围为0~1000uL/L时, 传感器对NO2有良好的敏感性, 频率为0.1Hz时的总阻值与NO2的浓度之间呈良好的线性关系. 在气体流速为400mL/min时, 获得的传感器对NO2的真实响应时间约为40s, 且响应信号稳定. 传感器对O2和CO2具有良好的抗干扰性能.

The perovskite nanoparticle materials La0.75Sr0.25Mn0.5Co0.5O3-δ were prepared in YSZ porous layer by infiltration technology. An impedancemetric-type NO2 sensor was prepared with the nanoparticle materials as sensing electrode and YSZ as solid state electrolyte. The crystalline phase and microstructure of sensing electrode in the NO2 sensor were investigated by XRD and SEM. The result of XRD indicated that perovskite LSCM was obtained in porous YSZ after infiltrating precursor solution and heat-treatment. SEM analysis demonstrated that the grain size of LSCM was 50-100 nm, and the LSCM nanoparticles were closely incorporated with YSZ frames in porous layer. The sensing characteristics of the present device were also investigated at 450-600℃. The results suggested that the sensor showed preferential sensitivity to NO2 with NO2 concentration from 0 to 1000uL/L. When frequency was fixed at  0.1 Hz, the total impedance of the sensor changed almost linearly with NO2 concentration. The real response time of the sensor to NO2 gas was around 40s at gas flow rate of 400mL/min. It is also found that the response of sensor is stable at given time and the sensor has good anti-interference to O2 and CO2.

参考文献

[1]
[2]
[3]
[4] Jeffrey W F. Materials for high temperature electrochemical NOx gas sensors. Sensors and Actuators B, 2007, 121(2): 652-663.

[2] Serge Z, Norio M. Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: what are the prospects for sensors. Sensors and Actuators B, 2007, 121(2): 639-651.

[3] Jiun C Y, Prabir K D. High temperature potentiometric NO2 sensor with asymmetric sensing and reference Pt electrodes. Sensors and Actuators B, 2010, 143(2): 459-463.

[4] Jiun C Y, Prabir K D. Solution-based synthesis of efficient WO3 sensing electrodes for high temperature potentiometric NOx sensors. Sensors and Actuators B, 2009, 136(2): 523-529.

[5] Jinsu P, Byoung Y Y, Chong O P, et al. Sensing behavior and mechanism of mixed potential NOx sensors using NiO, NiO(+YSZ) and CuO oxide electrodes. Sensors Actuators B, 2009, 135: 516-523.

[6] Praveen K S, Eric L B, Rangacgary M, et al. Application of commercial automotive sensor manufacturing methods for NOx/NH3 mixed potential sensors for on-board emissions control. Sensors and Actuators B, 2010, 144(1): 112-119.

[7] Eric L B, Rangachary M, Roger L, et al. Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOx sensing materials. Sensors and Actuators B, 2008, 130(2): 707-712.

[8] Elham K H, Cyrus Z, Ehsan M, et al. WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition. Sensors and Actuators B, 2010, 146(1): 165-170.

[9] Mathias S, Erik G, Saruhan B. Planar, impedance-metric NOx-sensor with spinel-type SE for high temperature applications. Sensors and Actuators B, 2007, 127(1): 224-230.

[10] Peter M, Leta Y W, Robert S G. Impendencemetric NOx sensing using YSZ electrolyte and YSZ/Cr2O3 composite electrodes. J. Electrochem. Soc., 2007, 154(3): J97-J104.

[11] Leta Y W, Peter L M, Robert S G. Effect of the electrode composition and microstructure on impendencemetric nitric oxide sensors based on YSZ electrolyte. J. Electrochem. Soc., 2008, 155(1): J32-J40.

[12] Briggs W, Enrico T, Eric W. Investigation of La2CuO4 /YSZ/Pt potentiometric NOx sensors with electrochemical impedance spectroscopy. J. Electrochem. Soc., 2008, 155(1): J11-J16.

[13] Norio M, Mitsunobu N, Sergr Z. Developmentof NOx sensing devices basedon YSZ and oxide electrode aiming for monitoring car exhausts. Ceram. Int., 2004, 30(7): 1135-1139.

[14] Norio M, Mitsunobu N. Impedance-based total-NOx sensor using stabilized zirconia and ZnCr2O4 sensing electrode operating at high temperature. Electrochem. Commun. 2002, 4(4): 284-287.

[15] Norio M, Mitsunobu N, Sergr Z. Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature. Sensors and Actuators B, 2003, 93(1): 221-228.

[16] Vladimir V P, Taro U, Perumal E, et al. NO2 sensing performances of planar sensor using stabilized zirconia and thin-NiO sensing electrode. Sensors and Actuators B, 2008, 130(1): 231-239.

[17] Majdeddin A, Chun Y W, Claus C R, et al. NOx sensing properties of In2O3 thin films grown by MOCVD. Sensors and Actuators B, 2008, 129(1): 467-472.

[18] Laure C, Elisabetta D B, Maria L G, et al. Non-nernstianplanar sensors basedonYSZ with a Nb2O5 electrode. Sensors and Actuators B, 2008, 129(2): 591-598.

[19] Sergr Z, Mitsunobu N, Norio M, et al. Potentiometric NOx sensor based on stabilized zirconia and NiCr2O4 sensing electrode operating at high temperatures. Electrochem. Commun., 2001, 3(2): 97-101.

[20] Taro U, Takayuki N, Haijime O, et al. Zirconia-based amperometric sensor using La&ndash
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%