利用水合肼液相还原法在纳米磷化镓(GaP)粉体表面沉积贵金属铂(Pt), 制备低Pt担载量Pt(0.80 wt%)/GaP和高Pt担载量Pt(4.2 wt%)/GaP纳米粉体样品. 在可见光照射条件下, 分别以GaP和Pt/GaP纳米粉体作为光催化剂, 对结晶紫水溶液进行光催化降解. 实验结果表明, GaP和Pt/GaP两种纳米粉体皆具有可见光响应光催化性能; Pt担载量对Pt/GaP纳米粉体的光催化性能有着较大的影响, 低Pt担载量Pt(0.80 wt%)/GaP纳米粉体的结晶紫光催化脱色率高于GaP纳米粉体, 而高Pt担载量Pt(4.2 wt%)/GaP粉体的结晶紫光催化脱色率则低于GaP纳米粉体.
Gallium phosphide (GaP) nanoparticle was synthesized by the reaction of sodium phosphide and gallium chloride in dimethylbenzene. GaP-supported platinum photocatalysts, Pt(0.80wt%)/GaP and Pt(4.2wt%)/ GaP nanoparticles, were prepared by the simple reduction of chloroplatinic acid (H2PtCl6) with hydrazine hydrate (N2H4·H2O). The photocatalytic activities of GaP and Pt/GaP nanoparticles for the decomposition of crystal violet were investigated under visible light irradiation. The results indicate that GaP, Pt(0.80wt%)/GaP and Pt(4.2wt%)/GaP nanoparticles can harness visible light to decompose crystal violet in aqueous solution. The photocatalytic activity of Pt(0.80wt%)/GaP is better than that of GaP while the photocatalytic activity of GaP is better than that of Pt(4.2wt%)/GaP. The Pt coverage has an important effect on the photocatalytic activity of Pt/GaP nanoparticles.
参考文献
[1] | |
[2] | Humphreys R G, R-ssler U, Cardona M. Indirect exciton fine structure in GaP and the effect of uniaxial stress. Phys. Rev. B, 1978, 18(10): 5590-5605. [2] Dean P J, Kaminsky G, Zetterstrom R B. Intrinsic optical absorption of gallium phosphide between 2.33 and 3.12 eV. J. Appl. Phys., 1967, 38(9): 3551-3556. [3] Tsay J F, Mitra S S, Bendow B. Pressure dependence of energy gaps and refractive indices of tetrahedrally bonded semiconductors. Phys. Rev. B, 1974, 10(4): 1476-1481. [4] Zhang Q, Zhang Z, Zhou Z. Probe into the reflection from GaP nanoparticles via different solutions of radiative transfer equation. Appl. Phys. B, 2008, 93(2/3): 589-593. [5] Zhang Z, Zou L, Cui D. ESR detection of Ga self-interstitial defects in GaP nano-solids. Mater. Sci. Eng. B, 2004, 111(1): 5-8. [6] Gao Sh, Cui D, Huang B, et al. Study on the factors affecting the particles size of GaP nanocrystalline materials. J. Cryst. Growth, 1998, 192(1/2): 89-92. [7] Mi-i- O I, Sprague J R, Curtis C J, et al. Synthesis and Characterization of InP, GaP, and GaInP2 quantum dots. J. Phys. Chem., 1995, 99(19): 7754-7759. [8] Kim Y, Jun Y, Jun B, et al. Sterically induced shape and crystalline phase control of GaP nanocrystals. J. Am. Chem. Soc., 2002, 124(46): 13656-13657. [9] Wang P, Huang B, Qin X, et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed., 2008, 47(41): 7931-7933. [10] Awazu K, Fujimaki M, Rockstuhl, et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc., 2008, 130(5): 1676-1680. [11] Chen J, Wiley B, McLellan J, et al. Optical Properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett., 2005, 5(10): 2058-2062. [12] Selvakannan P R, Sastry M. Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem. Commun., 2005(13): 1684-1686. [13] Nehl C L, Liao H, Hafner J H. Optical properties of star-shaped gold nanoparticles. Nano Lett., 2006, 6(4): 683-688.[14] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1): 69-96. [15] Subramanian V, Wolf E, Kamat P V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films- J. Phys. Chem. B, 2001, 105(46): 11439-11446. [16] Sadeghi M, Liu W, Zhang T-G, et al. Role of photoinduced charge carrier separation distance in heterogeneous photocatalysis:- oxidative degradation of CH3OH vapor in contact with Pt/TiO2 and cofumed TiO2-Fe2O3. J. Phys. Chem., 1996, 100(50): 19466-19474.  |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%