欢迎登录材料期刊网

材料期刊网

高级检索

ZnO、Zn2SnO4均为直接带隙宽禁带氧化物半导体,是优异的功能材料.以ZnO、SnO2为原料,通过共热蒸发法,合成了ZnO/Zn2SnO4纳米电缆结构.该纳米电缆结构为以ZnO为芯,Zn2SnO4为鞘,直径为50~100nm,长度可达上百微米.通过TEM分析手段,发现该纳米电缆结构中,ZnO的生长方向为<0001>方向,ZnO芯与Zn2SnO4鞘之间形成晶格外延关系.室温下光致发光谱结果显示,该纳米电缆结构在紫外区域(380.58nm附近处)存在很强的带边发光,而在可见光区域没有明显的发光带,这一结果表明:Zn2SnO4鞘层的存在能有效抑制ZnO表面的缺陷发光.ZnO/Zn2SnO4纳米电缆结构可以抑制电子-空穴的复合,在染料敏化太阳能电池等方面有一定的应用潜力.

参考文献

[1] Wang X D,Song J H,SummersC J,et al.Density-controlled growth of aligned ZnO nanowires sharing a common contact:a simple,low-cost,and mask-free technique for large-scale applications.J.Phys.Chem.B,2006,110(15):7720-7724.
[2] Wang X D,Summers C J,Wang Z L.Large-scale hexagonalpatterned growth of aligned ZnO nanorods for nano-ptoelectronics and nanosensor arrays.Nano Letters,2004,4(3):423-426.
[3] Kong X Y,Ding Y,Yang R S,et al.Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts.Science,2004,303(5662):1348-1351.
[4] Kong X Y,Wang Z L.Polar-surface dominted ZnO nanobelts and the electrostatic energy induced nanohelixes,nanosprings,and nanospirals.Appl.Phys.Lett.,2004,84(6):975-977.
[5] Gao P X,Wang Z L.Self-assembled nanowire-nanoribbon junction arrays of ZnO.J.Phys.Chem.B,2002,106(49):12653-12658.
[6] Huang W J,Fang G C,Wang C C.A nanometer-ZnO catalyst to enhance the ozonafion of 2,4,6-trichlorophenol in water.Colloids and Surfaces A:Physicochem.Eng.Aspects,2005,260(1/2/3):45-51.
[7] Wyethrich C R,Muller C A P,Fox G R,et al.All-fibre acousto-optic modulator using ZnO piezoelectric actuators.Sensors and Actuators A-Physical,1998,66(1/2/3):114-117.
[8] Dorfman A,Kumar N,Hahm J I.Nanoscale ZnO-enhanced fluorescence detection of protein Interactions.Advanced Materials,2006,18(20):2685-2690.
[9] Zvyagin A V,Zhao X,Gierden A.Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo.J.Biomed.Opt.,2008,13(6):064031.
[10] Yu J H,Choi G M.Current-voltage characteristics and selective CO detection of Zn2SnO4 and ZnO/Zr2SnO4,SnO2/Zn2SnO4 layered-type sensors.Sensors and Actuators B-Chemical,2001,72(2):141-148.
[11] Rong A,Gao X P,Li G R,et al.Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery.J.Phys.Chem.B,2006,110(30):14754-14760.
[12] Lee J W,Lee C H.Synthesis of Zn2SnO4 anode material by using supercritical water in a batch reactor.J.Supercritical Fluids,2010,55(1):252-258.
[13] Tan B,Toman E,Li Y G,et al.Zinc stannate (Zn2SnO4)dye-sensitized solar cells.J.Am Chem.Soc.,2007,129(14):4162-4163.
[14] Li B H,Luo L J,Xiao T,et al.Zn2SnO4-SnO2 heterojunction nanocomposites for dye-sensitized solar cells.J.Alloys Compd.,2011,509(5):2186-2191.
[15] Wang J X,Xie S S,Gao Y,et al.Growth and characterization of axially periodic Zn2SnO4 (ZTO) nanostructures.J.Crystal Growth,2004,267(1/2):177-183.
[16] Wang L S,Zhang X Z,Liao X,et al.A simple method to synthesize single-crystalline Zn2SnO4 (ZTO) nanowires and their photoluminescence properties.Nanotechnology,2005,16(12):2928-2931.
[17] Xing Y J,Xi Z H,Xue Z Q,et al.Optical properties of the ZnO nanotubes synthesized via vapor phase growth.Appl.Phys.Lett.,2003,83(9):1689-1691.
[18] Yuan H J,Xie S S,Liu D F,et al.Characterization of zinc oxide crystal nanowires grown by thermal evaporation of ZnS powders.Chem.Phys.Lett.,2003,371(3/4):337-341.
[19] Wang Y W,Zhang L D,Wang G Z,et al.Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties.J.Crystal Growth,2002,234(1):171-175.
[20] 赵传熙,吴萍,张丹莉,等(ZHAO Chuan-Xi,et al).Zn2SnO4纳米材料制备及光致发光特性.物理化学学报(Acta Phys.Chim.Sinica),2010,26(5):1343-1348.
[21] Bai X L,Pan N,Wang X P,et al.Synthesis and photocatalytic activity of one-dimensional ZnO-Zn2SnO4 mixed oxide nanowires.Chin.J.Chem.Phys.,2008,21(1):81-85.
[22] Wang S M,Yang Z S,Lu M K,et al.Coprecipitation synthesis of hollow Zn2SnO4 spheres.Mater.Lett.,2007,61(14/15):3005-3008.
[23] lpuche-Aviles M A,Wu Y Y.Photoelectrochemical study of the band structure of Zn2SnO4 prepared by the hydrothermal method.J.Am.Chem.Soc.,2009,131(9):3216-3224.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%