欢迎登录材料期刊网

材料期刊网

高级检索

以无机盐为前驱体, 利用溶胶?凝胶法固溶合成了(1-x)Pb(Fe2/3W1/3)O3-xPb(Mg1/2W1/2)O3多铁性固溶体. XRD分析表明, 在0≤x≤1.0的掺杂范围内, 700℃煅烧所得产物都具有钙钛矿结构; x=0时得到的纯Pb(Fe2/3W1/3)O3为长程无序结构, x=1.0时可获得完全有序的纯Pb(Mg1/2W1/2)O3相, 其单胞为Pb(Fe2/3W1/3)O3单胞的2倍; 当0<x<1.0时, (1-x)Pb(Fe2/3W1/3)O3-xPb(Mg1/2W1/2)O3固溶体也为有序结构, 出现1/2 (111)及1/2 (311) XRD衍射峰, 且强度随掺杂系数x的升高逐渐增大. TEM分析证实, 煅烧产物为具有钙钛矿结构的单相固溶体, 而非两相复合物; 固溶相形貌以立方颗粒为主, 随掺杂量增加其晶胞常数线性增大, 而晶粒尺寸先减小后变大. 性能测试发现, 固溶相的磁学性能随x的增加而逐渐下降, 起因于抗磁性的Pb(Mg1/2W1/2)O3破坏了Pb(Fe2/3W1/3)O3原有的价键结构所致.

Pb(Fe2/3W1/3)O3 was modified by doping Pb(Mg1/2W1/2)O3 with Sol-Gel method using inorganic salts as precursors. At calcination temperature of 700℃, the resulted solid solution (1-x)Pb(Fe2/3W1/3)O3-xPb(Mg1/2W1/2)O3 kept a perovskite structure in the whole doping range of 0≤x≤1. The obtained Pb(Mg1/2W1/2)O3 (x=1) is fully ordered with a unit cell as two times as that of Pb(Fe2/3W1/3)O3 (x=0). Solid solution (1-x)Pb(Fe2/3W1/3)O3- xPb(Mg1/2W1/2)O3 (0<x<1.0) also has an ordered crystal structure showing supperlattice peaks of 1/2 (111) and 1/2 (311) in X-ray diffraction, whose intensities become stronger as x increases. Combining electron diffraction and elemental analysis in transmission electron microscope, solid solution (1-x)Pb(Fe2/3W1/3)O3-xPb(Mg1/2W1/2)O3 is verified as a single phase with perovskite structure, rather than a mixture of two phases. The particles of solid solution have a cubic morphology, and their grain size first decreases and then increases when doping coefficient x varies from 0.2 to 0.8. Due to the substitution of larger Mg2+ for smaller Fe3+ ions, its lattice constant increases linearly with the enhancement of x. According to the measured M-H curves, the magnetic performance of the solid solution decays as the doping coefficient x increases, because the formation of diamagnetic Pb(Mg1/2W1/2)O3 could destroy the -Fe3+-W-O-W-Fe3+- and -Fe3+-O-Fe3+- magnetic bonds in antiferromagnetic Pb(Fe2/3W1/3)O3 phase.

参考文献

[1]
[2] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299(5613): 1719-1722.

[2] Cheong S W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater., 2007, 6(1): 13-20.

[3] Scott J F. Data storage - multiferroic memories. Nat. Mater., 2007, 6(4): 256-257.

[4] Israel C, Mathur N D, Scott J F. A one-cent room-temperature magnetoelectric sensor. Nat. Mater., 2008, 7(2): 93-94.

[5] Randall C A, Bhalla A S, Shrout T R, et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order. J.Mater. Res., 1990, 5(4): 829-834.

[6] Kumar A, Rivera I, Katiyar R S, et al. Multiferroic Pb(Fe0.66W0.33)0.80Ti0.2O3 thin films: A room-temperature relaxor ferroelectric and weak ferromagnetic. Appl. Phys. Lett., 2008, 92(13): 132913-1-3.

[7] Ye Z G, Toda K, Sato M, et al. Synthesis, structure and properties of the magnetic relaxor ferroelectric Pb(Fe2/3W1/3)O3. J. Korean Phys. Soc., 1998, 32(S3): 1028-1031.

[8] Kumar A, Murari N M, Katiyar R S. Diffused phase transition and relaxor behavior in Pb(Fe2/3W1/3)O3 thin films. Appl. Phys. Lett., 2007, 90(16): 162903-1-3.

[9] Mitoseriu L, Carnasciali M M, Piaggio P, et al. Evidence of the relaxor-paraelectric phase transition in Pb(Fe2/3W1/3)O3 ceramics. Appl. Phys. Lett., 2002, 81(26): 265006-1-3.

[10] Yang R Y, Lin M H, Lu H Y. Core-shell structures in pressureless-sintered undoped Pb(Fe2/3W1/3)O3 ceramics. Acta Mater., 2001, 49(13): 2597-2607.

[11] Ivanov S A, Eriksson S G, Tellgren R, et al. Neutron powder diffraction study of the magnetoelectric relaxor Pb(Fe2/3W1/3)O3. 
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%