欢迎登录材料期刊网

材料期刊网

高级检索

为了提高C/SiC复合材料的超高温抗烧蚀性能, 以锆粉、硼粉和酚醛树脂为原料, 通过泥浆涂刷后高温烧结的方法在C/SiC表面制备了ZrB2涂层, 研究了涂层的烧结反应过程, 并对其组成、结构和抗烧蚀性能进行了表征. 结果表明: 1200℃前Zr先与碳反应生成ZrC, 然后在1400~1600℃时ZrC与B反应生成ZrB2. 浆料配比为n(Zr): n(B):n(C)=1.0:1.5:1.0时, 1600℃制备的涂层由ZrB2、少量的ZrC及ZrO2组成. 氧乙炔焰烧蚀60s后, 由于ZrB2氧化形成了ZrO2熔融层, 涂层后的C/SiC复合材料的线烧蚀率几乎为零, 而未涂层的C/SiC复合材料的线烧蚀率为0.064mm/s.

In order to improve the ablation property of C/SiC composite at ultra high temperatures, ZrB2 coatings upon C/SiC composite were prepared by pasting the slurry of zirconium powder, boron powder and phenolic resin, followed by high temperature sintering. The reactions in the sintering process were investigated, and the component, microstructure and ablation property of the coatings were characterized. The results show that zirconium powder reacts firstly with pyrolytic carbon to form ZrC till 1200℃, and then ZrC reacts with boron to form ZrB2 during 1400℃-1600℃. When the mole ratio of Zr/B/C is 1.0/1.5/1.0, the coating sintered at 1600℃ is composed of mainly ZrB2, small amount of ZrC and ZrO2. After ablation for 60 s in oxyacetylene torch environment, the C/SiC composite with ZrB2 coating shows a linear recession rate of zero, due to the ZrO2 formation from ZrB2 oxidation, while the C/SiC composite without coating shows a linear recession ratio of 0.064mm/s.

参考文献

[1] Kontinos D A, Gee K, Prabhu D K. Temperature Constraints at the Sharp Leading Edge of a Crew Transfer Vehicle. AIAA 2001-2886, 2001.

[2] 陈林泉, 王书贤, 张胜勇, 等. 石墨渗铜喉衬材料的烧蚀机理分析. 固体火箭技术, 2004, 27(1): 57-59.

[3] 陈朝辉. 先驱体结构陶瓷. 长沙: 国防科技大学出版社, 2003:1.

[4] 陈 博, 张立同, 成来飞, 等(CHEN Bo, et al). 3D C/SiC复合材料喷管在小型固体火箭发动机中的烧蚀规律研究. 无机材料学报(Journal of Inorganic Materials), 2008, 23(5): 938-944.

[5] 吴定星, 董绍明, 张翔宇, 等(WU Ding-Xing, et al). 原位反应法制备Cf/SiC复合材料MoSi2-SiC-Si涂层. 无机材料学报(Journal of Inorganic Materials), 2009, 24(5): 978-982.

[6] Tang S, Deng J, Wang S, et al. Ablation behaviors of ultra-high temperature ceramic composites. Materials science and Engineering A, 2007, 465(1/2): 1-7.

[7] Han J, Hu P, Zhang X, et al. Oxidation behavior of zirconium diboride-silicon carbide at 1800℃. Scripta Materialia, 2007, 57(9): 825-828.

[8] Han J, Hu P, Zhang X, et al. Oxidation- resistant ZrB2-SiC composites at 2200℃. Compos. Sci. Technol., 2008, 68(9): 799-806.

[9] Wang A, Lebrun M, Msle G, et al. High-temperature behavior of LPCVD ZrB2 coating subjected to intense radiative flux. Surface and Coating Technology, 1995, 73(1/2): 60-65.

[10] Zaykosk James A, Talmy Inna G, Ashkenazi Jennifer K. Oxidation Resistant Coating for Carbon. US patent 6,632, 762 B1, 2003.10.14.

[11] Yigal Blum, Jochen Marschall, Hans Joachim Kleebe. Low Temperature, Low Pressuree Fabrication of Ultra High Temperature Ceramics (UHTCs). AFRL-ML-WP-2006-4200, 2006.

[12] Corral Erica L, Loehman Ronald. Ultra-high-temperature ceramic coatings for oxidation protection of carbon-carbon composites. Journal of America Ceramic Society, 2008, 91(5): 1495-1502.

[13] 吴定星, 董绍明, 丁玉生, 等 (WU Ding-Xing, et al). Cf/SiC复合材料SiC/(ZrB2-SiC/SiC)4涂层的制备及性能研究. 无机材料学报(Journal of Inorganic Materials), 2009, 24(4): 836-840.

[14] Mario Tului, Giuliano Marino, Teodoro Valente. Plasma spray deposition of ultra high temperature ceramics. Surface and Coating Technology, 2006, 201(5): 2103-2018.

[15] GJB 323A-96标准《烧蚀材料烧蚀实验方法》.

[16] Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 2007, 90(5): 1347-1364.

[17] Zhou G H, Wang S W, Guo J K, et al. The preparation and mechanical properties of the unidirectional carbon fiber reinforced zirconia composite. Journal of the European Ceramic Society, 2008, 28(4): 787-792.

[18] Blum Y D, Kleebe H J. Chemical reactivities of hafnium and its derived boride, carbide and nitride compounds at relatively mild temperature. Journal of Materials Science, 2004, 39(19): 6023-6042.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%