欢迎登录材料期刊网

材料期刊网

高级检索

采用阳极氧化法在钛表面制备不同管径的TiO2纳米管, 450℃热处理后经牛血清白蛋白(BSA)与钙磷的共沉积得到载有BSA的羟基磷灰石(HA)涂层. 经检测发现, 170nm管径的TiO2表面比100和50nm管径的表面具备更好的矿化能力, HA的形成能力随管径的增大而提高. 大管径表面得到的涂层结合强度高于小管径的, 可达16.95MPa. 经过真空预矿化的试样, 涂层结合强度明显高于未经过预矿化的试样, 且HA涂层生长速率加快. BSA与磷酸钙在真空预矿化后共沉积到氧化钛纳米管表面, 短时期内形成BSA-HA涂层, 是在钛基生物材料表面制备生物活性涂层的有效方法. 

TiO2 nanotubes on titanium with different diameters were prepared by anodic oxidation after heat-treated at 450℃. Hydroxyapatite (HA) coatings containing bovine serum albumin (BSA) were produced on the nanostructured surface through biomimetic co-deposition. The TiO2 nanotube layers with 170nm diameter has a better mineralization ability compared that with diameter of 100nm and 50nm, And the HA formation ability is enhanced with increase of the diameters. The bonding strength of the coating to the nanotube layers with large diameter is higher than that with small diameter, and the maximal strength can reach 16.95MPa. Moreover, the pre-mineralization in vacuum significantly enhances the bonding strength, and increases growth rate of the coating. The BSA-HA coating with high bonding strength can fastly form on TiO2 nanotube layers by pre-mineralization in vacuum and then biomimetic co-deposition, which would be a promised method for preparing titanium-based bioacitive coatings.

参考文献

[1] Bai X, Sandukas S. Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomaterialia, 2009, 5(9): 3563-3572.

[2] Ozeki K, Fukui Y, Aoki H. In-uence of the calcium phosphate content of the target on the phase composition and deposition rate of sputtered -lms. Applied Surface Science, 2007, 253(11): 5040-5044.

[3] Knabe C, Berger G. The modulation of osteogenesis in vitro by calcium titanium phosphate coatings. Biomaterials, 2004, 25(20): 4911-4919.

[4] Liu Y, Hunziker E B, Randall N X, et al. Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate. Biomaterials, 2003, 24(1): 65-70.

[5] Yu X H, Qu H B, Knecht D A, et al. Incorporation of bovine serum albumin into biomimetic coatings on titanium with high loading efficacy and its release behavior. J. Mater. Sci. Mater. Med., 2009, 20(1): 287-294.

[6] 王月勤, 陶 杰, 何聘婷. 二氧化钛纳米管上电沉积羟基磷灰石. 材料科学与工程学报, 2007, 25(2): 249-252.

[7] 刘达理. 钛表面二氧化钛纳米管及其Ti-TiO2-HA复合涂层. 成都: 西南交通大学硕士, 2009.

[8] 刘达理, 冯 波, 鲁 雄(LIU DA-Li, et al). 两段式阳极氧化法制备大管径TiO2纳米管. 稀有金属材料与工程(Rare Metal Mat. Eng.), 2010, 39(2): 325-328.

[9] 崔 强, 冯 波, 陈 伟, 等(CUI Qiang, et al). 形貌对锐钛矿型TiO2纳米管薄膜光催化性能的影响. 无机材料学报(Journal of Inorganic Materials), 2010, 25(9): 616-620.

[10] Gao L, Feng B. Micro/nano structural porous surface on titanium and bioactivity. Journal of Biomedical Materials Research PartB: Applied Biomaterials, 2009, 89B(2): 335-341.

[11] Feng B, Chu X J, Chen J M, et al. Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. Journal of Porous Materials, 2010, 17(4): 453-458.

[12] Standard Test Method for Tension Testing of Calcium Phosphate and Metallic Coatings. American Society for Testing and Materials. Designation: F 1147-99.

[13] Oh S H, Fin-nes R R, Daraio C, et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 2005, 26(24): 4938-4943.

[14] Zeng H, Chittur K K, Lacefield W R. Analysis of bovine serum albumin adsoption on calcium phosphate and titanium surfaces. Biomaterials, 1999, 20(4): 377-384.

[15] Feng B, Chen J Y. Interaction of calcium and phosphate in apatite coating on titanium with serum albumin. Biomaterials, 2002, 23(12): 2499-2507.

[16] Svetina M, Colombi C L, Sbaizero O, et al. Deposition of calcium ions on rutile (110): a first principles investigation. Acta Mater., 2001, 49: 2169-2177.

[17] 罗 荣, 冯 波, 屈树新, 等. 不同管径氧化钛纳米管层的微动磨损性能. 摩擦学学报, 2010, 30(5): 491-497.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%